Sàng lọc cho các chủng vi khuẩn axit lactic với đặc tính chống viêm và chống oxi hóa thông qua điều hòa miễn dịch ở tế bào HaCaT

Probiotics and Antimicrobial Proteins - Tập 15 - Trang 1665-1680 - 2023
Min Jae Shin1, Chul Sang Lee1,2, Sae Hun Kim1,2
1College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
2Institute of Life Science and Natural Resources, Korea University, Seoul, Republic of Korea

Tóm tắt

Trong nghiên cứu này, các đặc tính probiotic cơ bản và các tính chất chức năng của vi khuẩn axit lactic (LAB) đã được điều tra bằng hai mô hình vi mô gây viêm kích thích bởi lipopolysaccharide (LPS) và H2O2. Mười lăm chủng đã được sàng lọc từ 60 ứng viên LAB dựa trên khả năng tiêu diệt gốc tự do để xác định khả năng chống oxi hóa của các chủng. 15 ứng viên hàng đầu đã được điều tra thêm để đánh giá tỷ lệ sống sót của chúng dưới điều kiện pH thấp và muối mật giả lập môi trường ruột. Ba chủng, Levilactobacillus brevis D70 (Levilact), Lactiplantibacillus pentosus S16 (Lactipla) và Limosilactobacillus fermentum MF10 (Limosilact), có khả năng tiêu diệt gốc tự do và sống sót dưới các điều kiện ruột nhân tạo. Do đó, Levilact. brevis D70, Lactipla. pentosus S16 và Limosilact. fermentum MF10 đã được chọn để tiến hành các nghiên cứu tiếp theo về khả năng chống oxi hóa, chống viêm và hoạt động ty thể thông qua các mô hình tế bào viêm và căng thẳng oxi hóa. Trong ba chủng này, Limosilact. fermentum MF10 cho thấy các hoạt động chống viêm cao nhất bằng cách làm giảm đáng kể mức biểu hiện mRNA tương đối của các dấu hiệu sinh học viêm như interleukin 8 (IL-8) và interferon-gamma (IFN-γ) do LPS kích thích (P < 0.05). Hơn nữa, Limosilact. fermentum MF10 cũng có khả năng điều chỉnh mức biểu hiện gen của chất trung gian chống oxi hóa glutathione peroxidase 4 (GPX4) do các loài oxy phản ứng (ROS) trong cả tế bào biểu mô người HT-29 và tế bào keratinocyte HaCaT của người. Limosilact. fermentum MF10 cũng có khả năng điều chỉnh tiềm năng màng của ty thể (MMP), đóng vai trò quan trọng trong hoạt động của ty thể của tế bào HaCaT. Kết quả là, Limosilact. fermentum MF10 cho thấy tiềm năng cao nhất cho các đặc tính probiotic và tác động đến trục ruột-da liên quan đến miễn dịch bằng cách thay đổi các cytokine tiền viêm, các dấu hiệu sinh học chống oxi hóa và MMP.

Từ khóa

#vi khuẩn axit lactic #probiotic #chống viêm #chống oxi hóa #điều hòa miễn dịch #tế bào HaCaT

Tài liệu tham khảo

Teneva D, Denkova R, Goranov B, Denkova Z, Kostov G (2017) Antimicrobial activity of Lactobacillus plantarum strains against Salmonella pathogens. Ukr Food J 6:125–133. https://doi.org/10.24263/2304-974X-2017-6-1-14 Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S, Calder PC, Sanders ME (2014) Expert consensus document. The International Scientific Association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11:506–514. https://doi.org/10.1038/nrgastro.2014.66 Lee CS, Tan PL, Eor JY, Choi DH, Park M, Seo SK, Yoon S, Yang S, Kim SH (2019) Prophylactic use of probiotic chocolate modulates intestinal physiological functions in constipated rats. J Sci Food Agric 99:3045–3056. https://doi.org/10.1002/jsfa.9518 Lee CS, Park MH, Kim BK, Kim SH (2021) Antiobesity effect of novel probiotic strains in a mouse model of high-fat diet-induced obesity. Probiotics Antimicrob Proteins 13:1054–1067. https://doi.org/10.1007/s12602-021-09752-0 Lee CS, Kim JY, Kim BK, Lee IO, Park NH, Kim SH (2021) Lactobacillus-fermented milk products attenuate bone loss in an experimental rat model of ovariectomy-induced post-menopausal primary osteoporosis. J Appl Microbiol 130:2041–2062. https://doi.org/10.1111/jam.14852 Nam B, Kim SA, Park SD, Kim HJ, Kim JS, Bae CH, Kim JY, Nam W, Lee JL, Sim JH (2020) Regulatory effects of Lactobacillus plantarum HY7714 on skin health by improving intestinal condition. Plos One 15:e0231268. https://doi.org/10.1371/journal.pone.0231268 Zheng J, Wittouck S, Salvetti E, Franz CMAP, Harris HMB, Mattarelli P, O’Toole PW, Pot B, Vandamme P, Walter J, Watanabe K, Wuyts S, Felis GE, Gänzle MG, Lebeer S (2020) A taxonomic note on the genus Lactobacillus: description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Syst Evol Microbiol 70:2782–2858. https://doi.org/10.1099/ijsem.0.004107 Bron PA, van Baarlen P, Kleerebezem M (2011) Emerging molecular insights into the interaction between probiotics and the host intestinal mucosa. Nat Rev Microbiol 10:66–78. https://doi.org/10.1038/nrmicro2690 Lee CS, Kim SH (2020) Anti-inflammatory and anti-osteoporotic potential of Lactobacillus plantarum A41 and L. fermentum SRK414 as probiotics. Probiotics Antimicrob Proteins 12:623–634. https://doi.org/10.1007/s12602-019-09577-y O’Neill CA, Monteleone G, McLaughlin JT, Paus R (2016) The gut-skin axis in health and disease: a paradigm with therapeutic implications. BioEssays 38:1167–1176. https://doi.org/10.1002/bies.201600008 Byrd AL, Belkaid Y, Segre JA (2018) The human skin microbiome. Nat Rev Microbiol 16:143–155. https://doi.org/10.1038/nrmicro.2017.157 Jeong JH, Lee CY, Chung DK (2016) Probiotic lactic acid bacteria and skin health. Crit Rev Food Sci Nutr 56:2331–2337. https://doi.org/10.1080/10408398.2013.834874 Nestle FO, Di Meglio P, Qin JZ, Nickoloff BJ (2009) Skin immune sentinels in health and disease. Nat Rev Immunol 9:679–691. https://doi.org/10.1038/nri2622 Zhang Y, Shi S, Wang Y, Huang K (2011) Target-guided isolation and purification of antioxidants from Selaginella sinensis by offline coupling of DPPH-HPLC and HSCCC experiments. J Chromatogr B Analyt Technol Biomed Life Sci 879:191–196. https://doi.org/10.1016/j.jchromb.2010.12.004 Jacobsen CN, Rosenfeldt Nielsen V, Hayford AE, Møller PL, Michaelsen KF, Paerregaard A, Sandström B, Tvede M, Jakobsen M (1999) Screening of probiotic activities of forty-seven strains of Lactobacillus spp. by in vitro techniques and evaluation of the colonization ability of five selected strains in humans. Appl Environ Microbiol 65:4949–4956. https://doi.org/10.1128/AEM.65.11.4949-4956.1999 Lee CS, Park MH, Kim SH (2022) Selection and characterization of probiotic bacteria exhibiting antiadipogenic potential in 3T3-L1 preadipocytes. Probiotics Antimicrob Proteins 14:72–86. https://doi.org/10.1007/s12602-021-09793-5 Jang S, Javadov S (2018) Elucidating the contribution of ETC complexes I and II to the respirasome formation in cardiac mitochondria. Sci Rep 8:17732. https://doi.org/10.1038/s41598-018-36040-9 Di Caprio R, Lembo S, Di Costanzo L, Balato A, Monfrecola G (2015) Anti-inflammatory properties of low and high doxycycline doses: an in vitro study. Mediators Inflamm 2015:329418. https://doi.org/10.1155/2015/329418 Kim Y, Koh JH, Ahn YJ, Oh S, Kim SH (2015) The synergic anti-inflammatory impact of Gleditsia sinensis Lam. and Lactobacillus brevis KY21 on intestinal epithelial cells in a DSS-induced colitis model. Korean J Food Sci Anim Resour 35:604–610. https://doi.org/10.5851/kosfa.2015.35.5.604 Li Y, Xie H, Deng Z, Wang B, Tang Y, Zhao Z, Yuan X, Zuo Z, Xu S, Zhang Y (2019) Tranexamic acid ameliorates rosacea symptoms through regulating immune response and angiogenesis. Int Immunopharmacol 67:326–334. https://doi.org/10.1016/j.intimp.2018.12.031 Hardy OT, Perugini RA, Nicoloro SM, Gallagher-Dorval K, Puri V, Straubhaar J, Czech MP (2011) Body mass index-independent inflammation in omental adipose tissue associated with insulin resistance in morbid obesity. Surg Obes Relat Dis 7(1):60–67. https://doi.org/10.1016/j.soard.2010.05.013 Giles AJ, Hutchinson M-KN, Sonnemann HM, Jung J, Fecci PE, Ratnam NM, Zhang W, Song H, Bailey R, Davis D (2018) Dexamethasone-induced immunosuppression: mechanisms and implications for immunotherapy. J Immunother Cancer 6(1):1–13. https://doi.org/10.1186/s40425-018-0371-5 Li Y, Cheng T, Wan C, Cang Y (2020) circRNA_0084043 contributes to the progression of diabetic retinopathy via sponging miR-140–3p and inducing TGFA gene expression in retinal pigment epithelial cells. Gene 747:144653. https://doi.org/10.1016/j.gene.2020.144653 Hassani S, Ghaffari P, Chahardouli B, Alimoghaddam K, Ghavamzadeh A, Alizadeh S, Ghaffari SH (2018) Disulfiram/copper causes ROS levels alteration, cell cycle inhibition, and apoptosis in acute myeloid leukaemia cell lines with modulation in the expression of related genes. Biomed Pharmacother 99:561–569. https://doi.org/10.1016/j.biopha.2018.01.109 Wang Z, Cai B, Cao C, Lv H, Dai Y, Zheng M, Zhao G, Peng Y, Gou W, Wang J (2021) Downregulation of CD151 induces oxidative stress and apoptosis in trophoblast cells via inhibiting ERK/Nrf2 signaling pathway in preeclampsia. Free Radic Biol Med 164:249–257. https://doi.org/10.1016/j.freeradbiomed.2020.12.441 Liu Y, Wang Y, Liu J, Kang R, Tang D (2021) Interplay between MTOR and GPX4 signaling modulates autophagy-dependent ferroptotic cancer cell death. Cancer Gene Ther 28(1):55–63. https://doi.org/10.1038/s41417-020-0182-y Zhao R, Ying M, Gu S, Yin W, Li Y, Yuan H, Fang S, Li M (2019) Cysteinyl leukotriene receptor 2 is involved in inflammation and neuronal damage by mediating microglia M1/M2 polarization through NF-κB pathway. Neuroscience 422:99–118. https://doi.org/10.1016/j.neuroscience.2019.10.048 Wang Y, Wu Y, Wang Y, Xu H, Mei X, Yu D, Wang Y, Li W (2017) Antioxidant properties of probiotic bacteria. Nutrients 9:521. https://doi.org/10.3390/nu9050521 Nowak A, Paliwoda A, Błasiak J (2019) Anti-proliferative, pro-apoptotic and anti-oxidative activity of Lactobacillus and Bifidobacterium strains: a review of mechanisms and therapeutic perspectives. Crit Rev Food Sci Nutr 59(21):3456–3467. https://doi.org/10.1080/10408398.2018.1494539 Ramirez-Chavarin M, Wacher C, Eslava-Campos C, Perez-Chabela M (2013) Probiotic potential of thermotolerant lactic acid bacteria strains isolated from cooked meat products. Int Food Res J 20:991–1000 Denkova R, Dimbareva D, Denkova Z, Dobrev I (2012) Probiotic properties of Lactobacillus acidophilus A2 of human origin. In: Modern Technol Food Ind 334–339 Argyri AA, Zoumpopoulou G, Karatzas KA, Tsakalidou E, Nychas GJ, Panagou EZ, Tassou CC (2013) Selection of potential probiotic lactic acid bacteria from fermented olives by in vitro tests. Food Microbiol 33:282–291. https://doi.org/10.1016/j.fm.2012.10.005 Bao Y, Zhang Y, Zhang Y, Liu Y, Wang S, Dong X, Wang Y, Zhang H (2010) Screening of potential probiotic properties of Lactobacillus fermentum isolated from traditional dairy products. Food Control 21:695–701. https://doi.org/10.1016/j.foodcont.2009.10.010 Tannock GW, Dashkevicz MP, Feighner SD (1989) Lactobacilli and bile salt hydrolase in the murine intestinal tract. Appl Environ Microbiol 55:1848–1851. https://doi.org/10.1128/aem.55.7.1848-1851.1989 Guo C-F, Zhang S, Yuan Y-H, Yue T-L, Li J-Y (2015) Comparison of Lactobacilli isolated from Chinese suan-tsai and koumiss for their probiotic and functional properties. J Funct Foods 12:294–302. https://doi.org/10.1016/j.jff.2014.11.029 Salar U, Nizamani A, Arshad F, Khan KM, Fakhri MI, Perveen S, Ahmed N, Choudhary MI (2019) Bis-coumarins; non-cytotoxic selective urease inhibitors and antiglycation agents. Bioorg Chem 91:103170. https://doi.org/10.1016/j.bioorg.2019.103170 Khan DM, Manzoor MAP, Rao IV, Moosabba MS (2019) Evaluation of biofilm formation, cell surface hydrophobicity and gelatinase activity in Acinetobacter baumannii strains isolated from patients of diabetic and non-diabetic foot ulcer infections. Biocatal Agric Biotechnol 18:101007. https://doi.org/10.1016/j.bcab.2019.01.045 Duchen MR (2000) Mitochondria and calcium: from cell signalling to cell death. J Physiol 529:57–68. https://doi.org/10.1111/j.1469-7793.2000.00057.x Sanz A, Pamplona R, Barja G (2006) Is the mitochondrial free radical theory of aging intact? Antioxid Redox Signal 8:582–599. https://doi.org/10.1089/ars.2006.8.582 Schapira AHV (2006) Mitochondrial disease. Lancet 368:70–82. https://doi.org/10.1016/S0140-6736(06)68970-8 Suski JM, Lebiedzinska M, Bonora M, Pinton P, Duszynski J, Wieckowski MR (2012) Relation between mitochondrial membrane potential and ROS formation. Methods Mol Biol 810:183–205. https://doi.org/10.1007/978-1-61779-382-0_12 Lim HY, Jeong D, Park SH, Shin KK, Hong YH, Kim E, Yu YG, Kim TR, Kim H, Lee J, Cho JY (2020) Antiwrinkle and antimelanogenesis effects of tyndallized Lactobacillus acidophilus KCCM12625P. Int J Mol Sci 21:1620. https://doi.org/10.3390/ijms21051620 Philippe D, Favre L, Foata F, Adolfsson O, Perruisseau-Carrier G, Vidal K, Reuteler G, Dayer-Schneider J, Mueller C, Blum S (2011) Bifidobacterium lactis attenuates onset of inflammation in a murine model of colitis. World J Gastroenterol 17:459–469. https://doi.org/10.3748/wjg.v17.i4.459 Atabati H, Esmaeili SA, Saburi E, Akhlaghi M, Raoofi A, Rezaei N, Momtazi-Borojeni AA (2020) Probiotics with ameliorating effects on the severity of skin inflammation in psoriasis: evidence from experimental and clinical studies. J Cell Physiol 235(12):8925–8937. https://doi.org/10.1002/jcp.29737 Matsumoto S, Hara T, Hori T, Mitsuyama K, Nagaoka M, Tomiyasu N, Suzuki A, Sata M (2005) Probiotic Lactobacillus-induced improvement in murine chronic inflammatory bowel disease is associated with the down-regulation of pro-inflammatory cytokines in lamina propria mononuclear cells. Clin Exp Immunol 140:417–426. https://doi.org/10.1111/j.1365-2249.2005.02790.x Lim H-W, Lee Y, Huang Y-H, Yoon J-Y, Lee SH, Kim K, Lim C-J (2017) Enhancement of skin antioxidant and anti-inflammatory potentials of Agastache rugosa leaf extract by probiotic bacterial fermentation in human epidermal keratinocytes. Microbiol Biotechnol Lett 45:35–42. https://doi.org/10.4014/mbl.1701.01002 Ansary TM, Hossain MR, Kamiya K, Komine M, Ohtsuki M (2021) Inflammatory molecules associated with ultraviolet radiation-mediated skin aging. Int J Mol Sci 22:3974. https://doi.org/10.3390/ijms22083974 Kim HS, Jeong SG, Ham JS, Chae HS, Lee JM, Ahn CN (2006) Antioxidative and probiotic properties of Lactobacillus gasseri NLRI-312 isolated from Korean infant feces. Asian-Australas J Anim Sci 19:1335–1341. https://doi.org/10.5713/ajas.2006.1335 Mishra V, Shah C, Mokashe N, Chavan R, Yadav H, Prajapati J (2015) Probiotics as potential antioxidants: a systematic review. J Agric Food Chem 63:3615–3626. https://doi.org/10.1021/jf506326t