Screening for Ames mutagenicity of food flavor chemicals by (quantitative) structure-activity relationship

Genes and Environment - Tập 42 - Trang 1-6 - 2020
Kei-ichi Sugiyama1, Toshio Kasamatsu1, Airi Kitazawa1, Masamitsu Honma2
1Division of Genetics and Mutagenesis, National Institute of Health Sciences, Kawasaki City, Japan
2Division of Genetics and Mutagenesis, National Institute of Health Sciences, Kawasaki city, Japan

Tóm tắt

(Quantitative) Structure-Activity Relationship ((Q)SAR) is a promising approach to predict the potential adverse effects of chemicals based on their structure without performing toxicological studies. We evaluate the mutagenicity of food flavor chemicals by (Q) SAR tools, identify potentially mutagenic chemicals, and verify their mutagenicity by actual Ames test. The Ames mutagenicity of 3942 food flavor chemicals was predicted using two (Q)SAR) tools, DEREK Nexus and CASE Ultra. Three thousand five hundred seventy-five chemicals (91%) were judged to be negative in both (Q) SAR tools, and 75 chemicals (2%) were predicted to be positive in both (Q) SAR tools. When the Ames test was conducted on ten of these positive chemicals, nine showed positive results. The (Q) SAR method can be used for screening the mutagenicity of food flavors.

Từ khóa

#Human Genetics #Life Sciences #general

Tài liệu tham khảo

Okamura H, Abe H, Hasegawa-Baba Y, Saito K, Sekiya F, Hayashi S, Mirokuji Y, Maruyama S, Ono A, Nakajima M, Degawa M, Ozawa S, Shibutani M, Maitani. The Japan flavour and fragrance materials Association’s (JFFMA) safety assessment of acetal food flavouring substances uniquely used in Japan. Food Addit Contam A. 2015;32:1384–96. Konishi Y, Hayashi SM, Fukushima S. Regulatory forum opinion piece: supporting the need for international harmonization of safety assessments for food flavoring substances. Toxicol Pathol. 2014;42:949–53. Honma M. Threshold of toxicological concern for genotoxic impurities in pharmaceuticals. In: Nohmi T, Fukushima S, editors. Thresholds of genotoxic carcinogens. UK: Academic Press; 2016. p. 103–15. Chatterjee N, Walker GC. Mechanisms of DNA damage, repair, and mutagenesis. Environ Mol Mutagen. 2017;58:235–63. Kroes R, Galli C, Munro I, Schilter B, Tran L, Walker R, Würtzen G. Threshold of toxicological concern for chemical substances present in the diet: a practical tool for assessing the need for toxicity testing. Food Chem Toxicol. 2000;38:255–312. Mortelmans K, Zeiger E. The Ames salmonella/microsome mutagenicity assay. Mutat Res. 2000;455:29–60. Benigni R, Bossa C. Mechanisms of chemical carcinogenicity and mutagenicity: a review with implications for predictive toxicology. Chem Rev. 2011;111:2507–36. Honma M. An assessment of mutagenicity of chemical substances by (quantitative) structure–activity relationship. Genes Environ. 2020;42:23. ICH-M7 (R1) (2017) ICH Harmonized Guideline. Assessment and Control of DNA Reactive (Mutagenic) Impurities in Pharmaceuticals to Limit Potential Carcinogenic Risk. Current Step 4 version dated 31 March 2017. https://www.ich.org/home.html. Jacobson-Kram D, Contrera JF. Genetic toxicity assessment: employing the best science for human safety evaluation. Part I: early screening for potential human mutagens. Toxicol Sci. 2007;96:16–20. Felton JS, Knize MG, Wu RW, Colvin ME, Hatch FT, Malfatti MA. Mutagenic potency of food-derived heterocyclic amines. Mutat Res. 2007;616:90–4. Benfenati E, Benigni R, Demarini DM, Helma C, Kirkland D, Martin TM, Mazzatorta P, Ouédraogo-Arras G, Richard AM, Schilter B, Schoonen WG, Snyder RD, Yang C. Predictive models for carcinogenicity and mutagenicity: frameworks, state-of-the-art, and perspectives. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2009;27:57–90. Cronin MT, Dearden JC, Walker JD, Worth AP. Quantitative structure–activity relationships for human health effects: commonalities with other endpoints. Environ Toxicol Chem. 2003;22:1829–43. Williams RV, Amberg A, Brigo A, Coquin L, Giddings A, Glowienke S, Greene N, Jolly R, Kemper R, O'Leary-Steele C, Parenty A, Spirkl HP, Stalford SA, Weiner SK, Wichard J. It’s difficult, but important, to make negative predictions. Regul Toxicol Pharmacol. 2016;76:79–86. Barber C, Cayley A, Hanser T, Harding A, Heghes C, Vessey JD, Werner S, Weiner SK, Wichard J, Giddings A, Glowienke S, Parenty A, Brigo A, Spirkl HP, Amberg A, Kemper R, Greene N. Evaluation of a statistics-based Ames mutagenicity QSAR model and interpretation of the results obtained. Regul Toxicol Pharmacol. 2016;76:7–20. Klopman G, Rosenkranz HS. Structural requirements for the mutagenicity of environmental nitroarenes. Mutat Res. 1984;126:227–38. Landry C, Kim MT, Kruhlak NL, Cross KP, Saiakhov R, Chakravarti S, Stavitskaya L. Transitioning to composite bacterial mutagenicity models in ICH M7 (Q) SAR analyses. Regul Toxicol Pharmacol. 2019;109:104488. Mutagenicity test in under the industrial safety and health act. Test guideline and GLP (in Japanese). Tokyo: Japan Industrial Safety & Health Association (JISHA); 1991. OECD Guideline for Testing of Chemicals Test Guideline No. 471: bacterial reverse mutation test. OECD, Paris, France (1997). https://www.oecd.org/chemicalsafety/risk-assessment/1948418.pdf. Honma M, Kitazawa A, Cayley A, Williams RV, Barber C, Hanser T, Saiakhov R, Chakravarti S, Myatt GJ, Cross KP, Benfenati E, Raitano G, Mekenyan O, Petkov P, Bossa C, Benigni R, Battistelli CL, Giuliani A, Tcheremenskaia O, DeMeo C, Norinder U, Koga H, Jose C, Jeliazkova N, Kochev N, Paskaleva V, Yang C, Daga PR, Clark RD, Rathman J. Improvement of quantitative structure-activity relationship (QSAR) tools for predicting Ames mutagenicity: outcomes of the Ames/QSAR International Challenge Project. Mutagenesis. 2019;34:3–16. Ono A, Takahashi M, Hirose A, Kamata E, Kawamura T, Yamazaki T, Sato K, Yamada M, Fukumoto T, Okamura H, Mirokuji Y, Honma M. Validation of the (Q) SAR combination approach for mutagenicity prediction of flavor chemicals. Food Chem Toxicol. 2012;50:1538–46. Koleva YK, Madden JC, Cronin MT. Formation of categories from structure–activity relationships to allow read-across for risk assessment: toxicity of alpha,beta-unsaturated carbonyl compounds. Chem Res Toxicol. 2008;21:2300–12. Eder E, Hoffman C, Bastian H, Deininger C, Scheckenbach S. Molecular mechanisms of DNA damage initiated by alpha, beta-unsaturated carbonyl compounds as criteria for genotoxicity and mutagenicity. Environ Health Perspect. 1990;88:99–106. Martins C, Rueff J, Rodrigues AS. Genotoxic alkenylbenzene flavourings, a contribution to risk assessment. Food Chem Toxicol. 2018;118:861–79. Jin M, Kijima A, Suzuki Y, Hibi D, Inoue T, Ishii Y, Nohmi T, Nishikawa A, Ogawa K, Umemura T. Comprehensive toxicity study of safrole using a medium-term animal model with gpt delta rats. Toxicology. 2011;290:312–21. Ahlberg E, Amberg A, Beilke LD, Bower D, Cross KP, Custer L, Ford KA, Van Gompel J, Harvey J, Honma M, Jolly R, Joossens E, Kemper RA, Kenyon M, Kruhlak N, Kuhnke L, Leavitt P, Naven R, Neilan C, Quigley DP, Shuey D, Spirkl HP, Stavitskaya L, Teasdale A, White A, Wichard J, Zwickl C, Myatt GJ. Extending (Q) SARs to incorporate proprietary knowledge for regulatory purposes: a case study using aromatic amine mutagenicity. Regul Toxicol Pharmacol. 2016;77:1–12.