Sàng lọc và nhận diện các miRNA liên quan đến sự phân hóa giới tính của bông trong Ginkgo biloba thông qua phân tích tích hợp của RNA nhỏ, RNA và giải trình tự degradome

Springer Science and Business Media LLC - Tập 20 - Trang 1-18 - 2020
Xiao-Meng Liu1, Shui-Yuan Cheng2,3, Jia-Bao Ye1, Ze-Xiong Chen4, Yong-Ling Liao1, Wei-Wei Zhang1, Soo-Un Kim1,5, Feng Xu1,2
1College of Horticulture and Gardening, Yangtze University, Jingzhou, China
2National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, China
3National Selenium Rich Product Quality Supervision and Inspection Center, Enshi, China
4Research Institute for Special Plants, Chongqing University of Arts and Sciences 402160, ChongQing, China
5Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea

Tóm tắt

Ginkgo biloba, một loài thực vật điển hình lưỡng tính, là một loại cây thuốc cổ truyền được trồng rộng rãi. Tuy nhiên, cây có thời kỳ trưởng thành sinh dục kéo dài, điều này gây ảnh hưởng nghiêm trọng đến việc nhân giống và canh tác các giống ginkgo ưu việt. Để làm rõ cơ chế phức tạp của sự phân hóa giới tính trong bông của G. biloba, tổng cộng 3293 miRNA đã được xác định trong chồi và bông của G. biloba, bao gồm 1085 miRNA đã biết và 2208 miRNA mới, sử dụng ba phương pháp giải trình tự là transcriptome, RNA nhỏ và degradome. Phân tích transcriptome so sánh đã chọn lọc 4346 và 7087 gen biểu hiện khác biệt (DEGs) giữa chồi đực (MB) và chồi cái (FB), cũng như giữa bông vi thể (MS) và bông có hạt (OS). Tổng cộng 6032 gen mục tiêu đã được dự đoán cho miRNA biểu hiện khác biệt. Phân tích kết hợp các tập dữ liệu RNA nhỏ và transcriptome đã xác định 51 cặp tương tác miRNA-mRNA có thể tham gia vào quá trình phân hóa giới tính của bông G. biloba, trong đó 15 cặp đã được xác nhận trong phân tích giải trình tự degradome. Phân tích tổng hợp dữ liệu giải trình tự RNA nhỏ, RNA và degradome trong nghiên cứu này đã cung cấp các gen ứng cử và làm rõ cơ chế điều chỉnh sự phân hóa giới tính của bông G. biloba từ nhiều góc độ.

Từ khóa

#Ginkgo biloba #miRNAs #phân hóa giới tính #bông #giải trình tự RNA nhỏ #giải trình tự degradome

Tài liệu tham khảo

Ahlemeyer B, Krieglstein J. Neuroprotective effects of Ginkgo biloba extract. Cell Mol Life Sci. 2003;60(9):1779–92. Singh B, Kaur P, Sopichand GRD, Ahuja PS. Biology and chemistry of Ginkgo biloba. Fitoterapia. 2008;79(6):401–18. Zhang Q, Li J, Sang Y, Xing S, Wu Q, Liu X. Identification and characterization of microRNAs in Ginkgo biloba var. epiphylla Mak. PLoS One. 2015a;10(5):e0127184. Yan JP, Mao D, Liu XM, Wang LL, Xu F, Wang GY, et al. Isolation and functional characterization of a circadian-regulated CONSTANS homolog (GbCO) from Ginkgo biloba. Plant Cell Rep. 2017;36(9):1387–99. Mao D, Ye JB, Xu F. Advances of the flowering genes of gymnosperms. Not Bot Horti Agrobo. 2019;47(1):1–9. Delichere C, Veuskens J, Hernould M, Barbacar N, Mouras A, Negrutiu I, et al. SlY1, the first active gene cloned from a plant Y chromosome, encodes a WD-repeat protein. EMBO J. 1999;18(15):4169–79. Pfent C, Pobursky KJ, Sather DN, Golenberg EM. Characterization of SpAPETALA3 and SpPISTILLATA, B class floral identity genes in Spinacia oleracea, and their relationship to sexual dimorphism. Dev Genes Evol. 2005;215(3):132–42. Zhang Y, Zhao GY, Li YS, Mo N, Zhang J, Liang Y. Transcriptomic analysis implies that GA regulates sex expression via ethylene-dependent and ethylene-independent pathways in cucumber (Cucumis sativus L.). Front Plant Sci. 2017;8:10. Akagi T, Henry IM, Ohtani H, Morimoto T, Beppu K, Kataoka I, et al. A y-encoded suppressor of feminization arose via lineage-specific duplication of a cytokinin response regulator in kiwifruit. Plant Cell. 2018;30(4):780–95. Akagi T, Pilkington SM, Varkonyi-Gasic E, Henry IM, Sugano SS, Sonoda M, et al. Two Y chromosome-encoded genes determine sex in kiwifruit. Nat Plants. 2019;5(8):801–9. Eleblu JSY, Haraghi A, Mania B, Camps C, Rashid D, Morin H, et al. The gynoecious CmWIP1 transcription factor interacts with CmbZIP48 to inhibit carpel development. Sci Rep. 2019;9:15443. Hardenack S, Ye D, Saedler H, Grant S. Comparison of MADS box gene expression in developing male and female flowers of the dioecious plant white campion. Plant Cell. 1994;6(12):1775–87. Khryanin VN. Role of phytohormones in sex differentiation in plants. Russ J Plant Physl. 2002;49(4):545–51. Gerashchenkov GA, Rozhnova NA. The involvement of phytohormones in the plant sex regulation. Russ J Plant Physl. 2013;60(5):597–610. Park MY, Wu G, Gonzalez-Sulser A, Vaucheret H, Poethig RS. Nuclear processing and export of microRNAs in Arabidopsis. Proc Natl Acad Sci U S A. 2005;102(10):3691–6. Barrel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97. Guo HS, Xie Q, Fei JF, Chua NH. MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development. Plant Cell. 2005;17(5):1376–86. Medina C, da Rocha M, Magliano M, Ratpopoulo A, Revel B, Marteu N, et al. Characterization of microRNAs from Arabidopsis galls highlights a role for miR159 in the plant response to the root-knot nematode Meloidogyne incognita. New Phytol. 2017;216(3):882–96. Liu S, Mi X, Zhang R, An Y, Zhou Q, Yang T, et al. Integrated analysis of miRNAs and their targets reveals that miR319c/TCP2 regulates apical bud burst in tea plant (Camellia sinensis). Planta. 2019;250(4):1111–29. Schauer SE, Jacobsen SE, Meinke DW, Ray A. DICER-LIKE1: blind men and elephants in Arabidopsis development. Trends Plant Sci. 2002;7(11):487–91. Liu DM, Song Y, Chen ZX, Yu DQ. Ectopic expression of miR396 suppresses GRF target gene expression and alters leaf growth in Arabidopsis. Physiol Plant. 2009;136(2):223–36. Millar AA, Waterhouse PM. Plant and animal microRNAs: similarities and differences. Funct Integr Genomic. 2005;5(3):129–35. Palatnik JF, Allen E, Wu XL, Schommer C, Schwab R, Carrington JC, Weigel D. Control of leaf morphogenesis by microRNAs. Nature. 2003;425(6955):257–63. Banks JA. MicroRNA, sex determination and floral meristem determinacy in maize. Genome Biol. 2008;9(1):204. Akagi T, Henry IM, Tao R, Comai L. SPL Science 2014;346(6209):646–650. Cheng S, Cheng J, Xu F, Ye J, Wang XH. Molecular cloning and expression analysis of a putative e class MADS-box gene, GbSEP, from Ginkgo biloba. J Anim Plant Sci. 2016;26(1):253–60. Wang XH, Cheng JH, Xu F, Li XX, Zhang WW, Liao YL, et al. Molecular cloning and expression analysis of a MADS-box gene (GbMADS2) from Ginkgo biloba. Not Bot Horti Agrobo. 2015b;43(1):19–24. Yang F, Xu F, Wang XH, Liao YL, Chen QW, Meng XX. Characterization and functional analysis of a MADS-box transcription factor gene (GbMADS9) from Ginkgo biloba. Sci Hortic. 2016;212:104–14. Wang LL, Yan JP, Zhou X, Cheng SY, Chen ZX, Song QL, et al. GbFT, a FLOWERING LOCUS T homolog from Ginkgo biloba, promotes flowering in transgenic Arabidopsis. Sci Hortic. 2019;247:205–15. Zhang BH, Unver T. A critical and speculative review on microRNA technology in crop improvement: current challenges and future directions. Plant Sci. 2018;274:193–200. Wang LW, Liu HH, Li DT, Chen HB. Identification and characterization of maize microRNAs involved in the very early stage of seed germination. BMC Genomics. 2011;12:154. Aryal R, Ming R. Sex determination in flowering plants: Papaya as a model system. Plant Sci. 2014;217:56–62. Addo-Quaye C, Miller W, Axtell MJ. CleaveLand: a pipeline for using degradome data to find cleaved small RNA targets. Bioinformatics. 2009;25(1):130–1. Cui J, Zhao J, Zhao J, Xu H, Wang L, Jin B. Cytological and miRNA expression changes during the vascular cambial transition from the dormant stage to the active stage in Ginkgo biloba L. Trees. 2016;30(6):2177–88. Wang L, Zhao JG, Zhang M, Li WX, Luo KG, Lu ZG, et al. Identification and characterization of microRNA expression in Ginkgo biloba L. leaves. Tree Genet Genoms. 2015a;11(4):76. Ye J, Zhang X, Tan J, Xu F, Cheng S, Chen Z, et al. Global identification of Ginkgo biloba microRNAs and insight into their role in metabolism regulatory network of terpene trilactones by high-throughput sequencing and degradome analysis. Ind Crop Prod. 2020;148:112289. Du SH, Sang YL, Liu XJ, Xing SY, Li JH, Tang HX, et al. Transcriptome profile analysis from different sex types of Ginkgo biloba L. Front Plant Sci. 2016;7:871. Garg V, Khan AW, Kudapa H, Kale SM, Chitikineni A, Sun QW, et al. Integrated transcriptome, small RNA and degradome sequencing approaches provide insights into Ascochyta blight resistance in chickpea. Plant Biotechnol J. 2019;17(5):914–31. Li X, Li J, Fan Z, Liu Z, Tanaka T, Yin H. Global gene expression defines faded whorl specification of double flower domestication in Camellia. Sci Rep. 2017;7:3197. Schwarz DS, Hutvagner G, Du T, Xu ZS, Aronin N, Zamore PD. Asymmetry in the assembly of the RNAi enzyme complex. Cell. 2003;115(2):199–208. Yu B, Wang H. Translational inhibition by microRNAs in plants. Prog Mol Subcell Biol. 2010;50:41–57. Tanurdzic M, Banks JA. Sex-determining mechanisms in land plants. Plant Cell. 2004;16:S61–71. Lea US, Slimestad R, Smedvig P, Lillo C. Nitrogen deficiency enhances expression of specific MYB and bHLH transcription factors and accumulation of end products in the flavonoid pathway. Planta. 2007;225(5):1245–53. Zhang TQ, Zhao YL, Wang YC, Liu ZY, Gao CQ. Comprehensive analysis of MYB gene family and their expressions under abiotic stresses and hormone treatments in Tamarix hispida. Front Plant Sci. 2018;9:1303. Gu ZY, Zhu J, Hao Q, Yuan YW, Duan YW, Men SQ, et al. A novel R2R3-MYB transcription factor contributes to petal blotch formation by regulating organ-specific expression of pschs in tree peony (Paeonia suffruticosa). Plant Cell Physiol. 2019;60(3):599–611. Saha G, Park JI, Ahmed NU, Kayum MA, Kang KK, Nou IS. Characterization and expression profiling of MYB transcription factors against stresses and during male organ development in Chinese cabbage (Brassica rapa ssp pekinensis). Plant Physiol Biochem. 2016;104:200–15. Vimolmangkang S, Han YP, Wei GC, Korban SS. An apple MYB transcription factor, MdMYB3, is involved in regulation of anthocyanin biosynthesis and flower development. BMC Plant Biol. 2013;13:176. Mandaokar A, Browse MJ. MYB108 acts together with MYB 24 to regulate jasmonate-mediated stamen maturation in Arabidopsis. Plant Physiol. 2009;149(2):851–62. Song SS, Qi TC, Huang H, Ren QC, Wu DW, Chang CQ, et al. The Jasmonate-ZIM domain proteins interact with the R2R3-MYB transcription factors MYB21 and MYB24 to affect Jasmonate-regulated stamen development in Arabidopsis. Plant Cell. 2011;23(3):1000–13. Alabadi D, Blazquez MA, Carbonell J, Ferrandiz C, Perez-Amador MA. Instructive roles for hormones in plant development. Int J Dev Bio. 2009;53(8–10):1597–608. Xu G, Huang J, Yang Y, Yao YA. Transcriptome analysis of flower sex differentiation in Jatropha curcas L. using RNA sequencing. PLoS One. 2016;11(2):e0145613. Liu KD, Feng SX, Pan YL, Zhong JD, Chen Y, Yuan CC. Transcriptome analysis and identification of genes associated with floral transition and flower development in sugar apple (Annona squamosa L.). Front Plant Sci. 2016;7:1695. Liu XG, Dinh TT, Li DM, Shi BH, Li YP, Cao XW, et al. AUXIN RESPONSE FACTOR3 integrates the functions of AGAMOUS and APETALA2 in floral meristem determinacy. Plant J. 2014b;80(4):629–41. Liu N, Wu S, Van Houten J, Wang Y, Ding B, Fei ZJ, et al. Down-regulation of AUXIN RESPONSE FACTORS 6 and 8 by microRNA 167 leads to floral development defects and female sterility in tomato. J Exp Bot. 2014a;65(9):2507–20. Liu J, Hua W, Hu Z, Yang H, Zhang L, Li R, et al. Natural variation in ARF18 gene simultaneously affects seed weight and silique length in polyploid rapeseed. Proc Natl Acad Sci U S A. 2015;112(37):E5123–32. Dellaporta SL, Calderon-Urrea DA. Sex determination in flowering plants. Plant Cell. 1993;5(10):1241–51. Hui WK, Yang YT, Wu GJ, Peng CC, Chen XY, Zayed MZ. Transcriptome profile analysis reveals the regulation mechanism of floral sex differentiation in Jatropha curcas L. Sci Rep. 2017;7:16421. Ni J, Shah FA, Liu WB, Wang QJ, Wang DD, Zhao WW, et al. Comparative transcriptome analysis reveals the regulatory networks of cytokinin in promoting the floral feminization in the oil plant Sapium sebiferum. BMC Plant Biol. 2018;18:96. Cheng ZJ, Zhu SS, Gao XQ, Zhang XS. Cytokinin and auxin regulates WUS induction and inflorescence regeneration in vitro in Arabidopsis. Plant Cell Rep. 2010;29(8):927–33. Li DD, Sheng YY, Niu HH, Li Z. Gene interactions regulating sex determination in cucurbits. Front Plant Sci. 2019;10:1231. Fujiwara S, Nakagawa M, Oda A, Kato K, Mizoguchi T. Photoperiod pathway regulates expression of MAF5 and FLC that encode MADS-box transcription factors of the FLC family in Arabidopsis. Plant Biotechnol. 2010;27(5):447–54. Wurschum T, Gross-Hardt R, Laux T. APETALA2 regulates the stem cell niche in the Arabidopsis shoot meristem. Plant Cell. 2006;18(2):295–307. Yant L, Mathieu J, Dinh TT, Ott F, Lanz C, Wollmann H, et al. Orchestration of the floral transition and floral development in Arabidopsis by the bifunctional transcription factor APETALA2. Plant Cell. 2010;22(7):2156–70. Jin B, Wang L, Wang J, Teng NJ, He XD, Mu XJ, Wang YL. The structure and roles of sterile flowers in Viburnum macrocephalum f. keteleeri (Adoxaceae). Plant Biol. 2010;12(6):853–62. Onanuga AO, Jiang P, Adl S. Determination of endogenous hormones content in cotton varieties (Gossypiumhirsutum) as influenced by phosphorus and potassium nutrition. J Agric Sci. 2012;4:7. Fahlgren N, Howell MD, Kasschau KD, Chapman EJ, Sullivan CM, Cumbie JS, et al. High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS One. 2007;2(2):e219. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10(3):R25. Guan R, Zhao Y, Zhang H, Fan GY, Liu X, Zhou WB, et al. Draft genome of the living fossil Ginkgo biloba. GigaScience. 2016;5:49. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20. Wang LK, Feng ZX, Wang X, Wang XW, Zhang XG. Degseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics. 2010;26(1):136–8. German MA, Pillay M, Jeong DH, Hetawal A, Luo SJ, Janardhanan P, et al. Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nat Biotechnol. 2008;26(8):941–6. Friedlander MR, Mackowiak SD, Li N, Chen W, Rajewsky N. MirDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. 2012;40(1):37–52. Yang XZ, Li L. MiRDeep-P: a computational tool for analyzing the microRNA transcriptome in plants. Bioinformatics. 2011;27(18):2614–5. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. Allen E, Xie Z, Gustafson AM, Carrington JC. MicroRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell. 2005;121(2):207–21. Deng YY, Li JQ, Wu SF, Zhu YP, Chen YW, He FC. Integrated NR database in protein annotation system and its localization. Comput En. 2006;32:71–4. Apweiler R, Bairoch A, Wu CH, Barker WC, Boeckmann B, Ferro S, et al. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2004;32:D115–9. Ashburner M, Ball CA, Blake JA, Botstein D, Cherry JM. Gene ontology: tool for the unification of biology. Nat Genet. 2000;25(1):25–9. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. The KEGG resource for deciphering the genome. Nucleic Acids Res. 2004;32:D277–80. Tatusov RL, Galperin MY, Natale DA, Koonin EV. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 2000;28(1):33–6. Cheng S, Yan J, Meng X, Zhang W, Liao Y, Ye J, et al. Characterization and expression patterns of a cinnamate-4-hydroxylase gene involved in lignin biosynthesis and in response to various stresses and hormonal treatments in Ginkgo biloba. Acta Physiol Plant. 2018;40(1):1–15. Ye J, Cheng S, Zhou X, Chen ZX, Kim SU, Tan JP, et al. A global survey of full-length transcriptome of Ginkgo biloba reveals transcript variants involved in flavonoid biosynthesis. Ind Crop Prod. 2019;139:111547. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc. 2008;3(6):1101–8.