Science competencies in kindergarten: a prospective study in the last year of kindergarten

Unterrichtswissenschaft - Tập 49 Số 1 - Trang 117-136 - 2021
Susanne Koerber1, Christopher Osterhaus2
1Department of Psychology, Freiburg University of Education, Kunzenweg 21, 79117, Freiburg, Germany
2Universität Vechta, Driverstraße 22, 49377, Vechta, Germany

Tóm tắt

AbstractScience competencies are considered an important 21st century skill. How this skill develops in childhood is, however, not well understood, and in particular little is known about how different aspects of science competencies are related. In this prospective study with 58 children aged 5–6 years, we investigate the development of two aspects of science competence: scientific thinking and science content knowledge. Scientific thinking was assessed with a comprehensive 30-item instrument; science content knowledge was measured with an 18-item instrument that assesses children’s knowledge with regard to melting and evaporation. The results revealed basic competencies in scientific thinking and science content knowledge at the end of kindergarten (46% and 49% correct, respectively, both different from chance). In mid-kindergarten, children performed better than chance on the assessment of science content knowledge (40% correct) but not on the assessment of scientific thinking (34% correct). Science content knowledge in mid-kindergarten predicted children’s science content knowledge at the end of kindergarten, as well as scientific thinking (both at 6 years). The opposite pattern did not hold: scientific thinking in mid-kindergarten did not predict science content knowledge at the end of kindergarten. Our findings show initial science competencies during kindergarten, and they suggest that children’s science content knowledge and scientific thinking are interrelated in a meaningful way. These results are discussed with respect to the different hypotheses that connect scientific thinking and science content knowledge as key features of science competencies. Implications for research and teaching are discussed.

Từ khóa


Tài liệu tham khảo

Anders, Y., Hardy, I., Pauen, S., Ramseger, J., Sodian, B., & Steffensky, M. (2018a). Early science education—goals and process-related quality criteria for science teaching. Opladen: Barbara Budrich.

Anders, Y., Hardy, I., Pauen, S., Steffensky, M., Ramseger, J., Sodian, B., & Tytler, R. (2018b). Goals at the level of the children. In “Haus der kleinen Forscher” Foundation (Ed.), Early science education—Goals and process-related quality criteria for science teaching (pp. 41–74). Opladen: Barbara Budrich.

Bao, L., Cai, T., Koenig, K., Fang, K., Han, J., Wang, J., et al. (2009). Learning and scientific reasoning. Science, 323(5914), 586–587. https://doi.org/10.1126/science.1167740.

Bauer, J. R., & Booth, A. E. (2019). Exploring potential cognitive foundations of scientific literacy in preschoolers: causal reasoning and executive function. Early Childhood Research Quarterly, 46, 275–284. https://doi.org/10.1016/j.ecresq.2018.09.007.

Butler, L. P. (2020). The empirical child? A framework for investigating the development of scientific habits of mind. Child Development Perspectives, 14(1), 34–40. https://doi.org/10.1111/cdep.12354.

Bybee, R. (1997). Achieving scientific literacy: from purposes to practices. Portsmouth, NH: Heinemann.

Cannady, M. A., Vincent-Ruz, P., Chung, J. M., & Schunn, C. D. (2019). Scientific sensemaking supports science content learning across disciplines and instructional contexts. Contemporary Educational Psychology, 59, 101802. https://doi.org/10.1016/j.cedpsych.2019.101802.

Carstensen, C. H., Lankes, E. M., & Steffensky, M. (2011). Ein Modell zur Erfassung naturwissenschaftlicher Kompetenz im Kindergarten. Zeitschrift für Erziehungswissenschaft, 14(4), 651–669. https://doi.org/10.1007/s11618-011-0240-1.

Chen, Z., & Klahr, D. (1999). All other things being equal: acquisition and transfer of the control of variables strategy. Child Development, 70, 1098–1120. https://doi.org/10.1111/1467-8624.00081.

Driver, R., Leach, J., Millar, R., & Scott, P. (1996). Young people’s images of science. Open University Press: Maidenhead.

Edelsbrunner, P. A., Schalk, L., Schumacher, R., & Stern, E. (2018). Variable control and conceptual change: a large-scale quantitative study in elementary school. Learning and Individual Differences, 66, 38–53. https://doi.org/10.1016/j.lindif.2018.02.003.

Fischer, F., Kollar, I., Ufer, S., Sodian, B., Hussmann, H., Pekrun, R., et al. (2014). Scientific reasoning and argumentation: advancing an interdisciplinary research agenda in education. Frontline Learning Research, 2(3), 28–45. https://doi.org/10.14786/flr.v2i3.96.

Franse, R. K., Van Schijndel, T. J., & Raijmakers, M. E. (2020). Parental pre-knowledge enhances guidance during inquiry-based family learning in a museum context: an individual differences perspective. Frontiers in Psychology, 11, 1047. https://doi.org/10.3389/fpsyg.2020.01047.

Fridman, R., Eden, S., & Spektor-Levy, O. (2020). Scientific reasoning and argumentation: advancing an interdisciplinary research agenda in education. Frontiers in Psychology, 11, 1790. https://doi.org/10.3389/fpsyg.2020.01790.

Gopnik, A. (2012). Scientific thinking in young children: Theoretical advances, empirical research, and policy implications. Science, 337, 1623–1627. https://doi.org/10.1126/science.1223416.

van der Graaf, J., Segers, E., & Verhoeven, L. (2016). Scientific reasoning in kindergarten: cognitive factors in experimentation and evidence evaluation. Learning and Individual Differences, 49, 190–200. https://doi.org/10.1016/j.lindif.2016.06.006.

van der Graaf, J., Segers, E., & Verhoeven, L. (2018). Individual differences in the development of scientific thinking in kindergarten. Learning and Instruction, 56, 1–9. https://doi.org/10.1016/j.learninstruc.2018.03.005.

Greenfield, D. B., Jirout, J., Dominguez, X., Greenberg, A., Maier, M., & Fuccillo, J. (2009). Science in the preschool classroom: a programmatic research agenda to improve science readiness. Early Education and Development, 20, 238–264. https://doi.org/10.1080/10409280802595441.

Grob, A., Meyer, C. S., & Hagmann-von Arx, P. (2009). Intelligence and development scales. Bern: Huber.

Hardy, I., Kleickmann, T., Koerber, S., Mayer, D., Möller, K., & Pollmeier, J. (2010). Die Modellierung naturwissenschaftlicher Kompetenz im Grundschulalter. Projekt Science‑P. In E. Klieme, D. Leutner & M. Kenk (Eds.), Kompetenzmodellierung. Zwischenbilanz des DFG-Schwerpunktprogramms und Perspektiven des Forschungsansatzes. Zeitschrift für Pädagogik, Beiheft, (Vol. 56, pp. 115–125). Weinheim: Beltz.

Inhelder B, & Piaget J. (1958). The growth of logical thinking: From childhood to adolescence. New York, NY: Basic Books

Kastner-Koller, U., & Deimann, P. (1998). Wiener Entwicklungstest (WET) [Vienna development test]. Göttingen: Hogrefe.

Klahr, D., Zimmerman, C., & Jirout, J. (2011). Educational interventions to advance children’s scientific thinking. Science, 333(6045), 971–975. https://doi.org/10.1126/science.1204528.

Kloos, H., & Van Orden, G. C. (2005). Can a preschooler’s mistaken belief benefit learning? Swiss Journal of Psychology, 64(3), 195–205. https://doi.org/10.1024/1421-0185.64.3.195.

Koerber, S., & Osterhaus, C. (2019). Individual differences in early scientific thinking: assessment, cognitive influences, and their relevance for science learning. Journal of Cognition and Development, 20(4), 510–533. https://doi.org/10.1080/15248372.2019.1620232.

Koerber, S., Mayer, D., Osterhaus, C., Schwippert, K., & Sodian, B. (2015). The development of scientific thinking in elementary school: a comprehensive inventory. Child Development, 86(1), 327–336. https://doi.org/10.1111/cdev.12298.

Koerber, S., Sodian, B., Thoermer, C., & Nett, U. (2005). Scientific reasoning in young children: preschoolers’ ability to evaluate covariation evidence. Swiss Journal of Psychology, 64(3), 141–152. https://doi.org/10.1024/1421-0185.64.3.141.

Köksal-Tuncer, Ö., & Sodian, B. (2018). The development of scientific reasoning: hypothesis testing and argumentation from evidence in young children. Cognitive Development, 48, 135–145. https://doi.org/10.1016/j.cogdev.2018.06.011.

Kuhn, D. (2002). What is scientific thinking and how does it develop? In U. Goswami (Ed.), Blackwell handbook of childhood cognitive development (pp. 371–393). Malden: Blackwell. https://doi.org/10.1002/9780470996652.ch17.

Lazonder, A. W., & Harmsen, R. (2016). meta-analysis of inquiry-based learning: effects of guidance. Review of Educational Research, 86(3), 681–718. https://doi.org/10.3102/0034654315627366.

Leuchter, M., Saalbach, H., & Hardy, I. (2014). Designing science learning in the first years of schooling. An intervention study with sequenced learning material on the topic of ‘floating and sinking’. International Journal of Science Education, 36(10), 1751–1771. https://doi.org/10.1080/09500693.2013.878482.

Mayer, D., Sodian, B., Koerber, S., & Schwippert, K. (2014). Scientific reasoning in elementary school children: assessment and relations with cognitive abilities. Learning and Instruction, 29, 43–55. https://doi.org/10.1016/j.learninstruc.2013.07.005.

Morris, B. J., Croker, S., Masnick, A. M., & Zimmerman, C. (2012). The emergence of scientific reasoning. Current Topics in Children’s Learning and Cognition. Intechopen. https://doi.org/10.5772/53885.

National Research Council (NRC) (2012). A framework for K‑12 science education: practices, crosscutting concepts, and core ideas. Washington, DC: National Academies Press.

Nyberg, K., Osterhaus, C., & Koerber, S. (2020). How to measure scientific reasoning in primary school: a comparison of different test modalities. European Journal of Science and Mathematics Education, 8, 137–144. http://scimath.net/articles/83/833.pdf.

OECD (2010). “Science Framework” in PISA 2009. Assessment framework: key competencies in reading, mathematics and science. Paris: OECD Publishing. https://doi.org/10.1787/9789264062658-5-en.

Osterhaus, C., Koerber, S., & Sodian, B. (2017). Scientific thinking in elementary school: children’s social cognition and their epistemological understanding promote experimentation skills. Developmental Psychology, 53(3), 450–462. https://doi.org/10.1037/dev0000260.

Osterhaus, C., Koerber, S., & Sodian, B. (2020). The Science‑P Reasoning Inventory (SPR-I): measuring emerging scientific-reasoning skills in primary school. International Journal of Science Education, 42(7), 1087–1107. https://doi.org/10.1080/09500693.2020.1748251.

Pahnke, J., & Pauen, S. (2014). Entwicklung mathematischer und naturwissenschaftlicher Kompetenzen in der frühen Kindheit. In S. Ansari, S. Jeschonek, J. Pahnke & S. Pauen (Eds.), Wissenschaftliche Untersuchungen zur Arbeit der Stiftung „Haus der kleinen Forscher“ (pp. 17–68). Schaffhausen: Schubi Lernmedien.

Piekny, J., & Maehler, C. (2013). Scientific reasoning in early and middle childhood: the development of domain-general evidence evaluation, experimentation, and hypothesis generation skills. British Journal of Developmental Psychology, 31(2), 153–179. https://doi.org/10.1111/j.2044-835X.2012.02082.x.

Pollmeier, J., Tröbst, S., Hardy, I., Möller, K., Kleickmann, T., Jurecka, A., & Schwippert, K. (2017). Science‑P I: Modeling conceptual understanding in primary school. In D. Leutner, J. Fleischer, J. Grünkorn & E. Klieme (Eds.), Competence assessment in education. Methodology of educational measurement and assessment (pp. 9–17). Berlin, Heidelberg, New York: Springer. https://doi.org/10.1007/978-3-319-50030-0_2.

Reuter, T., & Leuchter, M. (2021). Children’s concepts of gears and their promotion through play. Journal of Research in Science Teaching, 58, 69–94. https://doi.org/10.1002/tea.21647.

Samarapungavan, A., Mantzicopoulos, P., Patrick, H., & French, B. (2009). The development and validation of the science learning assessment (SLA): a measure of kindergarten science learning. Journal of Advanced Academics, 20(3), 502–535. https://doi.org/10.1177/1932202X0902000306.

van Schaik, J. E., Slim, T., Franse, R. K., & Raijmakers, M. E. (2020). Hands-on exploration of cubes’ floating and sinking benefits children’s subsequent buoyancy predictions. Frontiers in Psychology, 11, 1665. https://doi.org/10.3389/fpsyg.2020.01665.

Schwichow, M., Osterhaus, C., & Edelsbrunner, P. A. (2020). The relation between the control-of-variables strategy and content knowledge in physics in secondary school. Contemporary Educational Psychology, 63, 101923. https://doi.org/10.1016/j.cedpsych.2020.101923.

Sobel, D. M., Letourneau, S. M., Legare, C. H., & Callanan, M. (2020). Relations between parent–child interaction and children’s engagement and learning at a museum exhibit about electric circuits. Developmental Science. https://doi.org/10.1111/desc.13057.

Sodian, B., Zaitchik, D., & Carey, S. (1991). Young children’s differentiation of hypothetical beliefs from evidence. Child Development, 62(4), 753–766. https://doi.org/10.1111/j.1467-8624.1991.tb01567.x.

Songer, N. B., & Linn, M. C. (1991). How do students’ views of science influence knowledge integration? Journal of Research in Science Teaching, 28, 761–784. https://doi.org/10.1002/tea.3660280905.

Steffensky, M., Lankes, E. M., Carstensen, C. H., & Nölke, C. (2012). Alltagssituationen und Experimente: Was sind geeignete naturwissenschaftliche Lerngelegenheiten für Kindergartenkinder? Zeitschrift für Erziehungswissenschaft, 15(1), 37–54. https://doi.org/10.1007/s11618-012-0262-3.

Tytler, R. (2000). A comparison of year 1 and year 6 students’ conceptions of evaporation and condensation: dimensions of conceptual progression. International Journal of Science Education, 22, 447–467. https://doi.org/10.1080/095006900289723.

Vosniadou, S. (2009). International handbook of research on conceptual change. London: Routledge.

Vosniadou, S., & Brewer, W. F. (1992). Mental models of the earth: a study of conceptual change in childhood. Cognitive Psychology, 24, 535–585. https://doi.org/10.1016/0010-0285(92)90018-W.

Weber, A. M., Reuter, T., & Leuchter, M. (2020). The impact of a construction play on 5‑to 6‑year-old children’s reasoning about stability. Frontiers in Psychology, 11, 1737. https://doi.org/10.3389/fpsyg.2020.01737.

Weinstock, M., Israel, V., Cohen, H. F., Tabak, I., & Harari, Y. (2020). Young schoolchildren’s epistemic development: a longitudinal qualitative study. Frontiers in Psychology, 11, 1475. https://doi.org/10.3389/fpsyg.2020.01475.

Weisberg, D. S., Choi, E., & Sobel, D. M. (2020). Of blickets, butterflies, and baby dinosaurs: children’s diagnostic reasoning across domains. Frontiers in Psychology, 11, 2210. https://doi.org/10.3389/fpsyg.2020.02210.

Wilkening, F., & Cacchione, T. (2011). Children’s intuitive physics. In U. Goswami (Ed.), The Wiley-Blackwell handbook of childhood cognitive development (pp. 473–496). Hoboken: Wiley-Blackwell.

Zimmerman, C. (2007). The development of scientific thinking skills in elementary and middle school. Developmental Review, 27(2), 172–223. https://doi.org/10.1016/j.dr.2006.12.001.