Động lực học phân tử mở rộng với NAMD

Journal of Computational Chemistry - Tập 26 Số 16 - Trang 1781-1802 - 2005
J. C. Phillips1, Rosemary Braun1, Wei Wang1, James C. Gumbart1, Emad Tajkhorshid1, Elizabeth Villa1, Christophe Chipot2, Robert D. Skeel3, Laxmikant V. Kalé3, Klaus Schulten1
1Beckman Institute, University of Illinois at Urbana–Champaign, Urbana, Illinois, 61801
2UMR CNRS/UHP 7565, Université Henri Poincaré, 54506 Vandæuvre-lès-Nancy, Cedex, France
3Department of Computer Science and Beckman Institute, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801

Tóm tắt

Tóm tắt

NAMD là một mã động lực học phân tử song song được thiết kế cho mô phỏng hiệu suất cao của các hệ thống sinh phân tử lớn. NAMD có khả năng mở rộng đến hàng trăm bộ xử lý trên các nền tảng song song hiệu năng cao, cũng như hàng chục bộ xử lý trên các cụm giá rẻ, và cũng có thể chạy trên máy tính để bàn và máy tính xách tay cá nhân. NAMD hoạt động với các hàm tiềm năng AMBER và CHARMM, các thông số và định dạng tệp. Bài viết này, dành cho cả người mới bắt đầu lẫn các chuyên gia, trước tiên giới thiệu các khái niệm và phương pháp được sử dụng trong chương trình NAMD, mô tả trường lực động lực học phân tử cổ điển, các phương trình chuyển động, và các phương pháp tích hợp cùng các thuật toán đánh giá điện động lực học hiệu quả được áp dụng và các biện pháp kiểm soát nhiệt độ và áp suất. Các tính năng để điều khiển mô phỏng vượt qua các rào cản và để tính toán các chênh lệch năng lượng tự do hóa học và hình thái được trình bày. Động lực cho và một lộ trình thiết kế nội bộ của NAMD, được triển khai bằng C++ và dựa trên các đối tượng song song Charm++, được tóm tắt. Các yếu tố ảnh hưởng đến hiệu suất tuần tự và song song của một mô phỏng được thảo luận. Cuối cùng, việc sử dụng NAMD điển hình được minh họa với các ứng dụng tiêu biểu cho một hệ thống sinh phân tử nhỏ, trung bình, và lớn, làm nổi bật các tính năng đặc biệt của NAMD, ví dụ, ngôn ngữ lập trình kịch bản Tcl. Bài viết cũng cung cấp danh sách các tính năng chính của NAMD và thảo luận về lợi ích của việc kết hợp NAMD với phần mềm đồ họa phân tử/phân tích chuỗi VMD và phần mềm điện toán lưới/collaboratory BioCoRE. NAMD được phân phối miễn phí kèm theo mã nguồn tại www.ks.uiuc.edu. © 2005 Wiley Periodicals, Inc. J Comput Chem 26: 1781–1802, 2005

Từ khóa


Tài liệu tham khảo

10.1006/jcph.1999.6201

10.1016/0263-7855(96)00018-5

10.1016/0010-4655(95)00045-H

10.1177/109434209601000401

10.1016/S0006-3495(97)78093-7

10.1073/pnas.0409387102

10.1021/jp973084f

10.1021/ja00315a051

10.1016/0010-4655(95)00042-E

10.1002/jcc.540020311

10.1002/andp.19213690304

10.1098/rspa.1980.0135

10.1080/08927029108022142

10.1002/prot.340060104

10.1021/jp9614658

10.1063/1.1614202

10.1021/jp0350924

10.1021/jp9937757

10.1080/00268978800101471

10.1063/1.464397

10.1063/1.470117

10.1007/978-3-662-05018-7

10.1529/biophysj.104.058727

Hockney R. W., 1981, Computer Simulation Using Particles

10.1002/jcc.10072

10.1016/0021-9991(90)90171-V

10.1007/978-1-4757-2063-1

10.1137/S0036142997329797

10.1002/prot.340050109

Dahlquist G., 1974, Numerical Methods

Frenkel D., 2002, Understanding Molecular Simulation from Algorithms to Applications

Gear C. W., 1971, Numerical Initial Value Problems in Ordinary Differential Equations

10.1063/1.463137

Grubmüller H.Master's thesis Physik‐Dept. der Tech. Univ. Munich Germany 1989.

10.1002/(SICI)1096-987X(19971115)18:14<1785::AID-JCC7>3.0.CO;2-G

10.1137/S1064827501399833

10.1007/978-3-642-58244-8

10.1016/0009-2614(84)80098-6

10.1063/1.471875

10.1080/0026897031000135825

10.1063/1.1651473

10.1063/1.1378321

Bhandarkar M.;Brunner R.;Chipot C.;Dalke A.;Dixit S.;Grayson P.;Gullingsrud J.;Gursoy A.;Hardy D.;Humphrey W.;Hurwitz D.;Krawetz N.;Nelson M.;Phillips J.;Shinozaki A.;Zheng G.;Zhu F.NAMD user's guide version 2.5.http://www.ks.uiuc.edu/Research/namd/2.5/ug/ug.html.

10.1063/1.470648

10.1103/PhysRevA.31.1695

10.1103/PhysRevA.34.2499

Hoover W. G., 1991, Computational Statistical Mechanics

10.1063/1.1755657

Izrailev S., 1998, Computational Molecular Dynamics: Challenges, Methods, Ideas, 39

Isralewitz B., J Mol Graph Model 2001, 19, 13, 10.1016/S1093-3263(00)00133-9

Kuhn L. A., Protein Flexibility and Folding

10.1016/S0959-440X(00)00194-9

J. Stone J. Gullingsrud P. Grayson K. Schulten J. F. Hughes C. H. Séquin 2001 ACM SIGGRAPH New York 191

10.1016/S0006-3495(03)74452-X

10.1006/jcph.1999.6218

10.1016/j.str.2005.03.001

10.1016/j.str.2004.09.009

10.1016/S0006-3495(04)74205-8

10.1016/S0006-3495(04)74082-5

10.1016/S0006-3495(03)74637-2

10.1016/S0006-3495(03)75028-0

10.1016/S0006-3495(02)75343-5

10.1073/pnas.102649299

10.1016/S0006-3495(99)77188-2

10.1002/(SICI)1097-0134(19990601)35:4<453::AID-PROT9>3.0.CO;2-M

10.1007/s008940050065

10.1016/S0006-3495(99)77022-0

10.1016/S0006-3495(97)78804-0

10.1016/S0006-3495(97)78326-7

10.1126/science.271.5251.997

10.1016/S0006-3495(99)77188-2

10.1016/0021-9991(77)90121-8

10.1016/0010-4655(95)00053-I

10.1063/1.441684

Lu H., 2000, Elastic Filaments of the Cell, 143, 10.1007/978-1-4615-4267-4_9

10.1016/S0006-3495(00)76273-4

10.1103/PhysRevLett.78.2690

10.1103/PhysRevE.56.5018

10.1126/science.1071152

10.1038/35102535

10.1007/BF01210677

10.1063/1.1590311

10.1002/jcc.540130812

10.1021/j100119a043

10.1146/annurev.physchem.52.1.499

10.1016/S0006-3495(04)74205-8

10.1137/040604789

Taylor R. M. II. VRPN: Virtual Reality Peripheral Network 1998.http://www.cs.unc.edu/Research/vrpn.

Dachille F.;Qin H.;Kaufman A.;El‐Sana J.In 1999 Symposium on Interactive 3D Graphics 1999 p.103.

Cohen J.;Grayson P.AutoIMD User's Guide 2003.http://www.ks.uiuc.edu/Research/vmd/plugins/autoimd.

10.1063/1.477019

10.1063/1.1740409

10.1063/1.1410978

10.1063/1.1773132

10.1126/science.2727695

10.1006/jmbi.1997.1236

10.1021/ja050581y

Allen M. P., 1987, Computer Simulation of Liquids

Kalé L. V., 1996, Parallel Programming using C++, 175, 10.7551/mitpress/5241.003.0009

Kalé L. V., 2002, LACSI 2002

Brunner R. K., 2000, Parallel and Distributed Computing for Symbolic and Irregular Applications, 167

Phillips J. C., 1998, Computational Molecular Dynamics: Challenges, Methods, Ideas, 472

Ousterhout J., 1994, Tcl and the Tk Toolkit

10.1016/S0009-2614(99)01123-9

Kale L. V.;Zheng G.;Lee C. W.;Kumar S.InFuture Generation Computer Systems Special Issue on: Large‐Scale System Performance Modeling and Analysis;in press.

F. Petrini D. J. Kerbyson S. Pakin 2003 IEEE Press Piscataway NJ

J. Phillips G. Zheng S. Kumar L. Kale 2002 IEEE Press Piscataway NJ

10.1016/S0021-9258(20)82050-X

10.1016/S0021-9258(18)34024-9

10.1146/annurev.biochem.67.1.425

10.1038/nsb965

10.1126/science.1092497

10.1016/S0014-5793(01)02749-1

10.1016/S0969-2126(01)00668-2

10.1126/science.1067778

10.1016/S0006-3495(02)75157-6

10.1016/j.str.2004.06.013

Tajkhorshid E., 2005, Bacterial Ion Channels and Their Eukaryotic Homologues, 153

10.1016/S0006-3495(03)74711-0

10.1103/PhysRevLett.93.224501

10.1126/science.271.5253.1247

10.1126/science.7792597

Ptashne M., 1992, A Genetic Switch

10.1515/9783110879476

10.1098/rsta.2004.1384

10.1016/j.str.2003.12.004

The RCSB Protein Data Bank.http://www.rcsb.org/pdb.

10.1016/S0006-3495(03)74929-7

M. Bhandarkar G. Budescu W. Humphrey J. A. Izaguirre S. Izrailev L. V. Kalé D. Kosztin F. Molnar J. C. Phillips K. Schulten A. G. Bruzzone A. Uchrmacher E. H. Page 1999 SCS International San Francisco San Francisco CA 242