Hỗ trợ Các Nhà Vô Địch Nhân Loại: AI như một Đối Tượng Có Năng Lực Hơn

Henrik Skaug Sætra1
1Faculty of Computer Science, Engineering and Economics, Østfold University College, Remmen, 1757, Halden, Norway

Tóm tắt

Tóm tắtTrí tuệ nhân tạo (AI) đã vượt qua con người trong một số hoạt động trí tuệ chuyên biệt — cờ vua và cờ vây là hai trong số nhiều ví dụ. Trong số những hậu quả tiềm tàng của sự phát triển này, tôi tập trung vào cách chúng ta có thể sử dụng AI tiên tiến để thúc đẩy việc học của con người. Mục đích của bài viết này là khám phá cách AI chuyên biệt có thể được sử dụng theo cách thúc đẩy sự phát triển của con người bằng cách đóng vai trò như một gia sư cho những nhà vô địch của chúng ta. Một khung phương pháp sử dụng AI như một gia sư cho các nhà vô địch nhân loại dựa trên lý thuyết học tập của Vygotsky được trình bày ở đây. Nó dựa trên phân tích triết học về khả năng của AI, các khía cạnh chính của lý thuyết học tập của Vygotsky và nghiên cứu hiện có về các hệ thống gia sư thông minh. Phương pháp chính được sử dụng là phát triển lý thuyết về một khung chung cho các hệ thống học tập chuyên gia powered by AI, sử dụng cờ vua và cờ vây làm ví dụ. Ngoài ra, dữ liệu từ các cuộc phỏng vấn công khai với những chuyên gia hàng đầu trong trò chơi cờ vua và cờ vây được sử dụng để xem xét tính khả thi và hiện thực của việc sử dụng AI theo cách như vậy. Dựa trên phân tích lý thuyết phát triển văn hóa xã hội của Vygotsky, tôi giải thích cách mà AI hoạt động trong khu vực phát triển gần (zone of proximal development) của những nhà vô địch của chúng ta và cách mà ngay cả các hệ thống AI không giáo dục cũng có thể thực hiện một số chức năng hỗ trợ nhất định. Tôi sau đó lập luận rằng AI kết hợp với các mô-đun cơ bản từ các hệ thống gia sư thông minh có thể thực hiện nhiều chức năng hỗ trợ hơn nữa, nhưng sự kết hợp thú vị nhất hiện nay là hỗ trợ bởi một nhóm gồm AI kết hợp với bạn đồng trang lứa và giảng viên con người.

Từ khóa


Tài liệu tham khảo

Alhabbash, M. I., Mahdi, A. O., & Naser, S. S. A. (2016). An intelligent tutoring system for teaching grammar English tenses. European Academic Research, IV(9).

Bernstein, S. (2012). Valedictorians of the Soviet school: Professionalization and the impact of war in Soviet chess. Kritika: Explorations in Russian and Eurasian History, 13(2), 395–418.

Bishop, C. M. (2006). Pattern recognition and machine learning: Springer.

Boorman, S. A. (1969). The protracted game: A wei-ch’i interpretation of Maoist revolutionary strategy: Oxford University Press, USA.

Brundage, M., Avin, S., Clark, J., Toner, H., Eckersley, P., Garfinkel, B., ... Filar, B. (2018). The malicious use of artificial intelligence: Forecasting, prevention, and mitigation. arXiv preprint arXiv:1802.07228

Brusilovsky, P. (1999). Adaptive and intelligent technologies for web-based eduction. Ki, 13(4), 19–25.

Campbell, M., Hoane, A. J., Jr., & Hsu, F.-H. (2002). Deep Blue. Artificial Intelligence, 134(1–2), 57–83.

Carr, N. (2020). The shallows: What the Internet is doing to our brains: WW Norton & Company.

Carvalho, E. M. D., & Rolla, G. (2020). An enactive-ecological approach to information and uncertainty. Frontiers in Psychology, 11, 588. https://doi.org/10.3389/fpsyg.2020.00588

Charisi, V., Davison, D., Wijnen, F., Van Der Meij, J., Reidsma, D., Prescott, T., ... Evers, V. (2015). Towards a child-robot symbiotic co-development: A theoretical approach. Paper presented at the AISB Convention 2015.

Chou, C.-Y., Chan, T.-W., & Lin, C.-J. (2003). Redefining the learning companion: The past, present, and future of educational agents. Computers & Education, 40(3), 255–269.

Chouard, T. (2016). The Go files: AI computer wraps up 4–1 victory against human champion. Nature News.

Coeckelbergh, M. (2010). Robot rights? Towards a social-relational justification of moral consideration. Ethics and Information Technology, 12(3), 209–221.

Cole, M., & Engeström, Y. (1993). A cultural-historical approach to distributed cognition. Distributed cognitions: Psychological and educational considerations, 1–46.

Danaher, J. (2016). The threat of algocracy: Reality, resistance and accommodation. Philosophy & Technology, 29(3), 245–268.

Danaher, J. (2019). Automation and Utopia: Human flourishing in a world without work: Harvard University Press.

Daniels, H. (2007). Pedagogy. In H. Daniels, M. Cole, & J. V. Wertsch (Eds.), The Cambridge companion to Vygotsky. Cambridge: Cambridge University Press.

Daniels, H., Cole, M., & Wertsch, J. V. (2007). Editors’ introduction. In H. Daniels, M. Cole, & J. V. Wertsch (Eds.), The Cambridge companion to Vygotsky. Cambridge: Cambridge University Press.

DeepMind. (2020). AlphaGo China. Retrieved from https://deepmind.com/alphago-china. Accessed 11 October 2021.

del Río, P., & Álvarez, A. (2007). Inside and outside the zone of proximal development. An ecofunctional Reading of Vygotsy. In H. Daniels, M. Cole, & J. V. Wertsch (Eds.), The Cambridge Companion to Vygotsky. Cambridge: Cambridge University Press.

Draper, S. W., & Anderson, A. (1991). The significance of dialogue in learning and observing learning. Computers & Education, 17(1), 93–107.

Economist, T. (2016, March 19). Artificial intelligence and Go: A game-changing result. The Economist. Retrieved from https://www.economist.com/science-and-technology/2016/03/19/a-game-changing-result. Accessed 8 October 2020.

Engeström, Y. (2015). Learning by expanding: Cambridge University Press.

Erümit, A. K., & Çetin, İ. (2020). Design framework of adaptive intelligent tutoring systems. Education and Information Technologies, 1–24.

Floridi, L., & Chiriatti, M. (2020). GPT-3: Its nature, scope, limits, and consequences. Minds and Machines. https://doi.org/10.1007/s11023-020-09548-1

Fulbright, R. (2020). The expertise level. Paper presented at the International Conference on Human-Computer Interaction.

Gerdes, A. (2016). The issue of moral consideration in robot ethics. ACM Sigcas Computers and Society, 45(3), 274–279.

Google. (2018). AlphaZero: Shedding new light on the grand games of chess, shogi and Go. Retrieved from https://deepmind.com/blog/article/alphazero-shedding-new-light-grand-games-chess-shogi-and-go. Accessed 8 October 2020.

Google. (2020a). AlphaGo. Retrieved from https://deepmind.com/research/case-studies/alphago-the-story-so-far. Accessed 8 October 2020.

Google. (2020b). AlphaStar: Mastering the real-time strategy game StarCraft II. Retrieved from https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii. Accessed 8 October 2020.

Google. (2020c). Solve intelligence. Use it to make the world a better place. Retrieved from https://deepmind.com/about/. Accessed 8 October 2020.

Google. (2021). LaMDA: Our breakthrough conversation technology. Retrieved from https://blog.google/technology/ai/lamda/. Accessed 9 July 2020.

Gunkel, D. J. (2018). Robot rights. MIT Press.

Gunning, D. (2017). Explainable artificial intelligence (xai). Defense Advanced Research Projects Agency (DARPA), nd Web, 2.

Guzman, A. L. (2018). What is human-machine communication, anyway? In A. L. Guzman (Ed.), Human-machine communication: Rethinking communication, technology, and ourselves (pp. 1–28). Peter Lang.

Haake, M., Axelsson, A., Clausen-Bruun, M., & Gulz, A. (2015). Scaffolding mentalizing via a play-&-learn game for preschoolers. Computers & Education, 90, 13–23.

Heaven, D. (2019). Two minds are better than one. New Scientist, 243(3244), 38–41.

Humble, N., & Mozelius, P. (2019). Teacher-supported AI or AI-supported teachers? Paper presented at the European Conference on the Impact of Artificial Intelligence and Robotics 2019 (ECIAIR 2019). Oxford, UK.

Hwang, W.-Y., Chang, C.-B., & Chen, G.-J. (2004). The relationship of learning traits, motivation and performance-learning response dynamics. Computers & Education, 42(3), 267–287.

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., ... Potapenko, A. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589.

Kaptelinin, V. (1992). Integration of computer tools into the structure of human activity: implications for cognitive ergonomics. Paper presented at the Human-computer interaction: Tasks and organisation. Proceedings of the sixth european conference on cognitive ergonomics.

Kaptelinin, V. (1996). Computer-mediated activity: Functional organs in social and developmental contexts. In B. A. Nardi (Ed.), Context and consciousness: Activity theory and human-computer interaction (pp. 45–68). MIT Press.

Kasparov, G. (2008). How life imitates chess: Random House.

Kasparov, G. (2019). AlphaZero and the knowledge revolution. In M. Sadler & N. Regan (Eds.), Game Changer: New in Chess.

Kellogg, D., & Veresov, N. (2019). Setting the stage. LS Vygotsky’s Pedological Works (pp. 65–84). Springer.

Kennedy, M. L. (2019). What do artificial intelligence (AI) and ethics of AI mean in the context of research libraries? In E. A. Waraksa (Ed.), Research Library Issues. RLI 299: Ethics of Artificial Intelligence. Association of Research Libraries.

Kissinger, H. (2011). On China. New York: The Penguin Press.

Korf, R. E. (1997). Does deep blue use artificial intelligence? ICGA Journal, 20(4), 243–245.

Kurzweil, R. (1990). The age of intelligent machines: MIT press Cambridge.

Kurzweil, R. (2015). Superintelligence and singularity. In S. Schneider (Ed.), Science Fiction and Philosophy: From Time Travel to Superintelligence (pp. 146–170). Wiley-Blackwell.

Lazzeri, S. G., & Heller, R. (1996). An intelligent consultant system for chess. Computers & Education, 27(3–4), 181–196.

Lesgold, A. M. (2019). Learning for the age of artificial intelligence: Eight education competences: Routledge.

Levy, S. (2022). Blake Lemoine says Google’s LaMDA AI faces ‘Bigotry’. Wired. Retrieved from https://www.wired.com/story/blake-lemoine-google-lamda-ai-bigotry/. Accessed 9 July 2022.

Lindblom, J., & Ziemke, T. (2003). Social situatedness of natural and artificial intelligence: Vygotsky and beyond. Adaptive Behavior, 11(2), 79–96.

Marcus, G., & Davis, E. (2019). Rebooting AI: Building artificial intelligence we can trust: Pantheon.

Metz, C. (2016). The sadness and beauty of watching Google’s AI play Go. Wired. Retrieved from https://www.wired.com/2016/03/sadness-beauty-watching-googles-ai-play-go/. Accessed 10 October 2020.

Molenaar, I., Van Boxtel, C. A., & Sleegers, P. J. (2010). The effects of scaffolding metacognitive activities in small groups. Computers in Human Behavior, 26(6), 1727–1738.

Mubin, O., Stevens, C. J., Shahid, S., Al Mahmud, A., & Dong, J.-J. (2013). A review of the applicability of robots in education. Journal of Technology in Education and Learning, 1(209–0015), 13.

Nagao, K. (2019). Artificial intelligence accelerates human learning: Discussion data analytics. Springer.

Nielsen, P. H. (2019). The exciting impact of a game changer: When Magnus met AlphaZero. New in Chess, 8, 2–10.

Nkambou, R., Bourdeau, J., & Psyché, V. (2010). Building intelligent tutoring systems: An overview. In Advances in Intelligent Tutoring Systems (pp. 361–375). Springer.

Norman, D. A. (1991). Cognitive artifacts. In J. M. Carroll (Ed.), Designing interaction: Psychology at the human-computer interface (pp. 17–38). Cambridge University Press.

Nussbaum, M., Alvarez, C., McFarlane, A., Gomez, F., Claro, S., & Radovic, D. (2009). Technology as small group face-to-face collaborative scaffolding. Computers & Education, 52(1), 147–153.

Nwana, H. S. (1990). Intelligent tutoring systems: An overview. Artificial Intelligence Review, 4(4), 251–277.

Okumura, Y., Kanakogi, Y., Kanda, T., Ishiguro, H., & Itakura, S. (2013). The power of human gaze on infant learning. Cognition, 128(2), 127–133.

Ormrod, J. E. (2016). Human learning: Pearson Higher Ed.

Reid, V. M., & Striano, T. (2005). Adult gaze influences infant attention and object processing: Implications for cognitive neuroscience. European Journal of Neuroscience, 21(6), 1763–1766.

Rietveld, E., Denys, D., & Van Westen, M. (2018). Ecological-enactive cognition as engaging with a field of relevant affordances. In A. Newen, L. De Bruin, & S. Gallagher (Eds.), The Oxford handbook of 4E cognition (vol. 41–70). Oxford University Press.

Robbins, S. (2019). A misdirected principle with a catch: Explicability for AI. Minds and Machines, 29(4), 495–514.

Rolla, G., & Novaes, F. (2020). Ecological-enactive scientific cognition: Modeling and material engagement. Phenomenology and the Cognitive Sciences, 1–19. https://doi.org/10.1007/s11097-020-09713-y

Russell, S., & Norvig, P. (2014). Artificial intelligence: A modern approach (3rd ed.). Pearson.

Sadler, M., & Regan, N. (2019). Game changer. New in Chess.

Sætra, H. S. (2019). When nudge comes to shove: Liberty and nudging in the era of big data. Technology in Society, 59, 101130. https://doi.org/10.1016/j.techsoc.2019.04.006

Sætra, H. S. (2020). The parasitic nature of social AI: Sharing minds with the mindless. Integrative Psychological and Behavioral Science, 54, 308–326. https://doi.org/10.1007/s12124-020-09523-6

Sætra, H. S. (2021). Challenging the neo-anthropocentric relational approach to robot rights. Frontiers in Robotics and AI. https://doi.org/10.3389/frobt.2021.744426

Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K., Sifre, L., Schmitt, S., ... Graepel, T. (2020). Mastering atari, go, chess and shogi by planning with a learned model. Nature, 588, 604–609. https://doi.org/10.1038/s41586-020-03051-4

Shannon, C. E. (1950). XXII. Programming a computer for playing chess. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 41(314), 256–275.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., ... Lanctot, M. (2016). Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587), 484.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., ... Graepel, T. (2017). Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., ... Graepel, T. (2018). A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science, 362(6419), 1140–1144.

Strogatz, S. (2018). One giant step for a chess-playing machine. New York Times.

Strøm, O. K. (2019). PAPPA GIR Dataprogram ÆREN for magnus carlsens forvandling. Retrieved from https://www.vg.no/sport/i/naPnXL/pappa-gir-dataprogram-aeren-for-magnus-carlsens-forvandling. Accessed 10 October 2020.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction: MIT press.

Tomasello, M. (2009). The cultural origins of human cognition: Harvard university press.

van den Herik, H. J. (2018). Computer chess: From idea to DeepMind. ICGA Journal, 40(3), 160–176.

Vygotsky, L. S. (1980). Mind in society: The development of higher psychological processes: Harvard university press.

Vygotsky, L. S. (1987). The collected works of LS Vygotsky: Problems of general psychology, including the volume thinking and speech. New York: Plenum Press.

Vygotsky, L. S. (1989). Concrete Human Psychology. Soviet Psychology, 27(2), 53–77. https://doi.org/10.2753/RPO1061-0405270253

Vygotsky, L. S. (1997). Educational psychology. St. Lucie Press.

Vygotsky, L. S. (2019). The problem of the environment in pedology. LS Vygotsky’s Pedological Works (pp. 65–84). Springer.

Wachter, S., Mittelstadt, B., & Floridi, L. (2017). Transparent, explainable, and accountable AI for robotics.

Webb, K. (2019, November 27). A former world champion of the game Go says he's retiring because AI is so strong: ‘Even if I become the No. 1, there is an entity that cannot be defeated’. Retrieved from https://www.businessinsider.com/deep-mind-alphago-ai-lee-sedol-south-korea-go-2019-11?r=US&IR=T. Accessed 10 October 2020.

Wertsch, J. V. (2002). Computer mediation, PBL, and dialogicality. Distance Education, 23(1), 105–108.

Wertsch, J. V. (2007). Mediation. In H. Daniels, Michael, Cole, & J. V. Wertsch (Eds.), The Cambridge companion to Vygotsky (pp. 178–192). Cambridge, Cambridge University Press.

Wood, D., Bruner, J. S., & Ross, G. (1976). The role of tutoring in problem solving. Journal of Child Psychology and Psychiatry, 17(2), 89–100.

Yeung, K. (2017). ‘Hypernudge’: Big Data as a mode of regulation by design. Information, Communication & Society, 20(1), 118–136. https://doi.org/10.1080/1369118X.2016.1186713

Yun, G. (2017, May 27). Glorious still is Ke Jie despite 0–3 loss to AlphaGo. China Global Television Network. Retrieved from https://news.cgtn.com/news/3d49544f7a41444e/share_p.html. Accessed 10 October 2020.