Salmonella Typhimurium infection disrupts but continuous feeding of Bacillus based probiotic restores gut microbiota in infected hens

Samiullah Khan1, Kapil K. Chousalkar1
1School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia 5371, Australia

Tóm tắt

Abstract Background The gut microbiota plays an important role in the colonisation resistance and invasion of pathogens. Salmonella Typhimurium has the potential to establish a niche by displacing the microbiota in the chicken gut causing continuous faecal shedding that can result in contaminated eggs or egg products. In the current study, we investigated the dynamics of gut microbiota in laying chickens during Salmonella Typhimurium infection. The optimisation of the use of an infeed probiotic supplement for restoration of gut microbial balance and reduction of Salmonella Typhimurium load was also investigated. Results Salmonella infection caused dysbiosis by decreasing (FDR < 0.05) the abundance of microbial genera, such as Blautia, Enorma, Faecalibacterium, Shuttleworthia, Sellimonas, Intestinimonas and Subdoligranulum and increasing the abundance of genera such as Butyricicoccus, Erysipelatoclostridium, Oscillibacter and Flavonifractor. The higher Salmonella Typhimurium load resulted in lower (P < 0.05) abundance of genera such as Lactobacillus, Alistipes, Bifidobacterium, Butyricimonas, Faecalibacterium and Romboutsia suggesting Salmonella driven gut microbiota dysbiosis. Higher Salmonella load led to increased abundance of genera such as Caproiciproducens, Acetanaerobacterium, Akkermansia, Erysipelatoclostridium, Eisenbergiella, EscherichiaShigella and Flavonifractor suggesting a positive interaction of these genera with Salmonella in the displaced gut microbiota. Probiotic supplementation improved the gut microbiota by balancing the abundance of most of the genera displaced by the Salmonella challenge with clearer effects observed with continuous supplementation of the probiotic. The levels of acetate and butyrate in the faeces were not affected (P > 0.05) by Salmonella challenge and the butyrate level was increased by the continuous feeding of the probiotic. Probiotic supplementation in Salmonella challenged chickens resulted in higher level of propionate. Continuous probiotic supplementation decreased (P < 0.05) the overall mean load of Salmonella in faeces and had a significant effect on Salmonella load reduction in internal organs. Conclusions Salmonella challenge negatively impacts the diversity and abundance of many gut microbial genera involved in important functions such as organic acid and vitamin production. Strategic feeding of a Bacillus based probiotic helps in restoring many of the microbial genera displaced by Salmonella Typhimurium challenge.

Từ khóa


Tài liệu tham khảo

Stanley D, Denman SE, Hughes RJ, Geier MS, Crowley TM, Chen H, Haring VR, Moore RJ. Intestinal microbiota associated with differential feed conversion efficiency in chickens. Appl Microbiol Biotechnol. 2012;96:1361–9.

Stappenbeck TS, Hooper LV, Gordon JI. Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proc Natl Acad Sci U S A. 2002;99:15451–5.

Talham GL, Jiang H-Q, Bos NA, Cebra JJ. Segmented filamentous bacteria are potent stimuli of a physiologically normal state of the murine gut mucosal immune system. Infect Immun. 1999;67:1992–2000.

Oakley BB, Lillehoj HS, Kogut MH, Kim WK, Maurer JJ, Pedroso A, et al. The chicken gastrointestinal microbiome. FEMS Microbiol Lett. 2014;360:100–12.

Cui Y, Wang Q, Liu S, Sun R, Zhou Y, Li Y. Age-related variations in intestinal microflora of free-range and caged hens. Front Microbiol. 2017;8:1310.

Ford L, Moffatt C, Fearnley E, Miller M, Gregory J, Sloan-Gardner T, et al. The epidemiology of Salmonella enterica outbreaks in Australia, 2001-2016. Front Sustain Food Syst. 2018;2:86.

Dieye Y, Ameiss K, Mellata M, Curtiss R. The Salmonella Pathogenicity Island (SPI) 1 contributes more than SPI2 to the colonization of the chicken by Salmonella enterica serovar Typhimurium. BMC Microbiol. 2009;9:3.

Stecher B, Barthel M, Schlumberger MC, Haberli L, Rabsch W, Kremer M, et al. Motility allows S. Typhimurium to benefit from the mucosal defence. Cell Microbiol. 2008;10:1166–80.

Staib L, Fuchs TM. Regulation of fucose and 1, 2-propanediol utilization by Salmonella enterica serovar Typhimurium. Front Microbiol. 2015;6:1116.

Ballou AL, Ali RA, Mendoza MA, Ellis JC, Hassan HM, Croom WJ, et al. Development of the chick microbiome: how early exposure influences future microbial diversity. Front Vet Sci. 2016;3:2.

Mon KKZ, Saelao P, Halstead MM, Chanthavixay G, Chang H-C, Garas L, et al. Salmonella enterica serovars Enteritidis infection alters the indigenous microbiota diversity in young layer chicks. Front Vet Sci. 2015;2:61.

Myers SP. The causes of intestinal dysbiosis: a review. Altern Med Rev. 2004;9:180–97.

Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes. 2016;7:189–200.

Sun M, Wu W, Liu Z, Cong Y. Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases. J Gastroenterol. 2017;52:1–8.

Fellows R, Denizot J, Stellato C, Cuomo A, Jain P, Stoyanova E, et al. Microbiota derived short chain fatty acids promote histone crotonylation in the colon through histone deacetylases. Nat Commun. 2018;9:105.

Scheppach W. Effects of short chain fatty acids on gut morphology and function. Gut. 1994;35:S35–8.

Senga T, Iwamoto S, Yoshida T, Yokota T, Adachi K, Azuma E, et al. LSSIG is a novel murine leukocyte-specific GPCR that is induced by the activation of STAT3. Blood. 2003;101:1185–7.

Lu Y, Fan C, Li P, Lu Y, Chang X, Qi K. Short chain fatty acids prevent high-fat-diet-induced obesity in mice by regulating G protein-coupled receptors and gut microbiota. Sci Rep. 2016;6:37589.

Zhang J-M, Sun Y-S, Zhao L-Q, Chen T-T, Fan M-N, Jiao H-C, Zhao J-P, Wang X-J, Li F-C, Li H-F, et al. SCFAs-induced GLP-1 secretion links the regulation of gut microbiome on hepatic Lipogenesis in chickens. Front Microbiol. 2019;10:2176.

Fuller R. Probiotics in man and animals. J Appl Bacteriol. 1989;66:365–78.

Lloyd AB, Cumming RB, Kent RD. Prevention of Salmonella Typhimurium infection in poultry by pretreatment of chickens and poults with intestinal extracts. Aust Vet J. 1977;53:82–7.

Laport MS, Bauwens M, Collard M, George I. Phylogeny and antagonistic activities of culturable Bacteria associated with the gut microbiota of the sea urchin (Paracentrotus lividus). Curr Microbiol. 2018;75:359–67.

Reid G, Howard J, Gan BS. Can bacterial interference prevent infection? Trends Microbiol. 2001;9:424–8.

Honda K, Littman DR. The microbiome in infectious disease and inflammation. Annu Rev Immunol. 2012;30:759–95.

Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG, Gordon JI. Molecular analysis of commensal host-microbial relationships in the intestine. Science. 2001;291:881–4.

Buffie CG, Pamer EG. Microbiota-mediated colonization resistance against intestinal pathogens. Nat Rev Immunol. 2013;13:790.

Rechkemmer G, Rönnau K. Fermentation of polysaccharides and absorption of short chain fatty acids in the mammalian hindgut. Comp Biochem Physiol A. 1988;90:563–8.

Million M, Alou MT, Khelaifia S, Bachar D, Lagier JC, Dione N, et al. Increased gut redox and depletion of anaerobic and methanogenic prokaryotes in severe acute malnutrition. Sci Rep. 2016;6:26051.

Ismail AS, Valastyan JS, Bassler BL. A host-produced autoinducer-2 mimic activates bacterial quorum sensing. Cell Host Microbe. 2016;19:470–80.

Wilson KH, Perini F. Role of competition for nutrients in suppression of Clostridium difficile by the colonic microflora. Infect Immun. 1988;56:2610–4.

Tejada-Simon MV, Pestka JJ. Proinflammatory cytokine and nitric oxide induction in murine macrophages by cell wall and cytoplasmic extracts of lactic acid bacteria. J Food Prot. 1999;62:1435–44.

Brisbin JT, Gong J, Parvizi P, Sharif S. Effects of lactobacilli on cytokine expression by chicken spleen and cecal tonsil cells. Clin Vaccine Immunol. 2010;17:1337–43.

Mikulski D, Jankowski J, Naczmanski J, Mikulska M, Demey V. Effects of dietary probiotic (Pediococcus acidilactici) supplementation on performance, nutrient digestibility, egg traits, egg yolk cholesterol, and fatty acid profile in laying hens. Poult Sci. 2012;91:2691–700.

Panda AK, Rama Rao SS, Raju MVLN, Sharma SS. Effect of probiotic (Lactobacillus sporogenes) feeding on egg production and quality, yolk cholesterol and humoral immune response of white Leghorn layer breeders. J Sci Food Agric. 2008;88:43–7.

Van Coillie E, Goris J, Cleenwerck I, Grijspeerdt K, Botteldoorn N, Van Immerseel F, et al. Identification of lactobacilli isolated from the cloaca and vagina of laying hens and characterization for potential use as probiotics to control Salmonella Enteritidis. J Appl Microbiol. 2007;102:1095–106.

Luoma A, Markazi A, Shanmugasundaram R, Murugesan G, Mohnl M, Selvaraj R. Effect of synbiotic supplementation on layer production and cecal Salmonella load during a Salmonella challenge. Poult Sci. 2017;96:4208–16.

Wang L, Li L, Lv Y, Chen Q, Feng J, Zhao X. Lactobacillus plantarum restores intestinal permeability disrupted by Salmonella infection in newly-hatched chicks. Sci Rep. 2018;8:2229.

Pascual M, Hugas M, Badiola JI, Monfort JM, Garriga M. Lactobacillus salivarius CTC2197 prevents Salmonella Enteritidis colonization in chickens. Appl Environ Microbiol. 1999;65:4981–6.

Pavic A, Groves PJ, Bailey G, Cox JM. A validated miniaturized MPN method, based on ISO 6579: 2002, for the enumeration of Salmonella from poultry matrices. J Appl Microbiol. 2010;109:25–34.

Gole VC, Woodhouse R, Caraguel C, Moyle T, Rault J-L, Sexton M, et al. Dynamics of Salmonella shedding and welfare of hens in free-range egg production systems. Appl Environ Microbiol. 2017;83:e03313–6.

Pande VV, Devon RL, Sharma P, McWhorter AR, Chousalkar KK. Study of Salmonella Typhimurium infection in laying hens. Front Microbiol. 2016;7:203.

Gole VC, Chousalkar KK, Roberts JR. Survey of Enterobacteriaceae contamination of table eggs collected from layer flocks in Australia. Int J Food Microbiol. 2013;164:161–5.

Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75:7537–41.

MiSeq SOP [https://www.mothur.org/wiki/MiSeq_SOP]. Accessed 10 Aug 2019.

Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012;41:D590–6.

Westcott SL, Schloss PD. OptiClust, an improved method for assigning amplicon-based sequence data to operational taxonomic units. MSphere. 2017;2:e00073–17.

Ondov BD, Bergman NH, Phillippy AM. Interactive metagenomic visualization in a web browser. BMC Bioinformatics. 2011;12:385.

Script to convert mothur taxonomy summary files to Krona XML format [https://github.com/accaldwell/mothur_krona]. Accessed 10 Aug 2019.

Simple script to generate Krona charts for all samples in an OTU table file [https://github.com/GenomicaMicrob/OTUsamples2krona]. Accessed 10 Aug 2019.

Zakrzewski M, Proietti C, Ellis JJ, Hasan S, Brion MJ, Berger B, et al. Calypso: a user-friendly web-server for mining and visualizing microbiome–environment interactions. Bioinformatics. 2016;33:782–3.

Chen L, Reeve J, Zhang L, Huang S, Wang X, Chen J. GMPR: A robust normalization method for zero-inflated count data with application to microbiome sequencing data. PeerJ. 2018;6:406264.

Pickard JM, Zeng MY, Caruso R, Núñez G. Gut microbiota: role in pathogen colonization, immune responses, and inflammatory disease. Immunol Rev. 2017;279:70–89.

Videnska P, Sedlar K, Lukac M, Faldynova M, Gerzova L, Cejkova D, et al. Succession and replacement of bacterial populations in the caecum of egg laying hens over their whole life. PLoS One. 2014;9:e115142.

Azcarate-Peril MA, Butz N, Cadenas MB, Koci M, Ballou A, Mendoza M, et al. An attenuated Salmonella enterica serovar Typhimurium strain and galacto-oligosaccharides accelerate clearance of Salmonella infections in poultry through modifications to the gut microbiome. Appl Environ Microbiol. 2018;84:e02526–17.

Morotomi M, Nagai F, Watanabe Y. Description of Christensenella minuta gen. nov., sp. nov., isolated from human faeces, which forms a distinct branch in the order Clostridiales, and proposal of Christensenellaceae fam. nov. Int J Syst Evol Microbiol. 2012;62:144–9.

Dey N, Soergel DA, Repo S, Brenner SE. Association of gut microbiota with post-operative clinical course in Crohn’s disease. BMC Gastroenterol. 2013;13:131.

Liu L, Lin L, Zheng L, Tang H, Fan X, Xue N, et al. Cecal microbiome profile altered by Salmonella enterica, serovar Enteritidis inoculation in chicken. Gut Pathog. 2018;10:34.

Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59.

Amir I, Bouvet P, Legeay C, Gophna U, Weinberger A. Eisenbergiella tayi gen. nov., sp. nov., isolated from human blood. Int J Syst Evol Microbiol. 2014;64:907–14.

Mancabelli L, Milani C, Lugli GA, Turroni F, Cocconi D, van Sinderen D, et al. Identification of universal gut microbial biomarkers of common human intestinal diseases by meta-analysis. FEMS Microbiol Ecol. 2017;93:fix153.

Sergeant MJ, Constantinidou C, Cogan TA, Bedford MR, Penn CW, Pallen MJ. Extensive microbial and functional diversity within the chicken cecal microbiome. PLoS One. 2014;9:e91941.

Wang K, Liao M, Zhou N, Bao L, Ma K, Zheng Z, et al. Parabacteroides distasonis alleviates obesity and metabolic dysfunctions via production of succinate and secondary bile acids. Cell Rep. 2019;26:222–35 e225.

Polansky O, Sekelova Z, Faldynova M, Sebkova A, Sisak F, Rychlik I. Important metabolic pathways and biological processes expressed by chicken cecal microbiota. Appl Environ Microbiol. 2016;82:1569–76.

Berger FK, Schwab N, Glanemann M, Bohle RM, Gärtner B, Groesdonk HV. Flavonifractor (Eubacterium) plautii bloodstream infection following acute cholecystitis. IDCases. 2018;14:e00461.

LeBlanc JG, Chain F, Martín R, Bermúdez-Humarán LG, Courau S, Langella P. Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria. Microb Cell Factories. 2017;16:79.