Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Nghiên cứu học STEM qua lăng kính các quỹ kiến thức
Tóm tắt
Bài viết này khảo sát việc học STEM như một quá trình văn hóa tập trung vào các cộng đồng phi thống trị. Dựa trên công trình của tôi về quỹ kiến thức và giáo dục toán học, tôi trình bày ba tình huống để nêu ra một số câu hỏi xoay quanh mối liên hệ giữa toán học ở trường và toán học ngoài trường học. Chúng ta định nghĩa năng lực như thế nào? Nhiệm vụ và môi trường ảnh hưởng đến sự tham gia ra sao? Vai trò của cảm xúc, ngôn ngữ và nhận thức trong các bối cảnh khác nhau là gì? Những tình huống này nhằm làm nổi bật sự phức tạp của việc di chuyển qua các lĩnh vực khác nhau trong thực hành STEM—cuộc sống hàng ngày, trường học và các lĩnh vực STEM. Dựa trên những phát hiện từ các cuộc phỏng vấn nghề nghiệp, tôi thảo luận về các đặc điểm của việc học và sự tham gia vào các thực hành hàng ngày và đề xuất một số lĩnh vực để nghiên cứu thêm, bao gồm bản chất của các thực hành STEM hàng ngày, việc định giá kiến thức, lựa chọn ngôn ngữ và các hình thức tham gia khác nhau.
Từ khóa
#học STEM #quỹ kiến thức #toán học #cộng đồng phi thống trị #thực hành hàng ngày #giáo dục STEMTài liệu tham khảo
Ascher, M. (1991). Ethnomathematics: A multicultural view of mathematical ideas. New York: Chapman & Hall.
Benn, R. (1997). Adults count too: Mathematics for empowerment. Leicester, England: NIACE.
Brown, J. S., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of learning. Educational Researcher, 18(1), 32–42. doi:10.3102/0013189X018001032.
Civil, M. (1990). “You only do math in math”: a look at four prospective teachers’ views about mathematics. For the Learning of Mathematics, 10(1), 7–9.
Civil, M. (2002a). Culture and mathematics: A community approach. Journal of Intercultural Studies, 23(2), 133–148. doi:10.1080/07256860220151050A.
Civil, M. (2002b). Everyday mathematics, mathematicians’ mathematics, and school mathematics: Can we bring them together? In M. Brenner & J. Moschkovich (Eds.), Everyday and academic mathematics in the classroom (pp. 40–62). Reston, VA: NCTM.
Civil, M. (2007). Building on community knowledge: An avenue to equity in mathematics education. In N. Nasir & P. Cobb (Eds.), Improving access to mathematics: Diversity and equity in the classroom (pp. 105–117). New York: Teachers College Press.
Civil, M., & Andrade, R. (2002). Transitions between home and school mathematics: Rays of hope amidst the passing clouds. In G. de Abreu, A. J. Bishop, & N. C. Presmeg (Eds.), Transitions between contexts of mathematical practices (pp. 149–169). Boston, MA: Kluwer.
Civil, M., & Planas, N. (2010). Latino/a immigrant parents’ voices in mathematics education. In E. Grigorenko & R. Takanishi (Eds.), Immigration, diversity, and education (pp. 130–150). New York, NY: Routledge.
D’Ambrosio, U. (1985). Ethnomathematics and its place in the history and pedagogy of mathematics. For the Learning of Mathematics, 5(1), 44–48.
de Abreu, G. (1995). Understanding how children experience the relationship between home and school mathematics. Mind, Culture, and Activity, 2, 119–142. doi:10.1080/10749039509524693.
de Abreu, G., & Cline, T. (2007). Social valorization of mathematical practices: the implications for learners in multicultural schools. In N. Nasir & P. Cobb (Eds.), Improving access to mathematics: Diversity and equity in the classroom (pp. 118–131). New York: Teachers College Press.
Dierking, L., Falk, J., Rennie, L., Anderson, D., & Ellenbogen, K. (2003). Policy statement of the “Informal Science Education” ad hoc committee. Journal of Research in Science Teaching, 40, 108–111. doi:10.1002/tea.10066.
Dowling, P. (1998). The sociology of mathematics education: Mathematical myths/pedagogical texts. Bristol, PA: Falmer Press.
Falk, J., & Dierking, L. (2010). The 95 percent solution. American Scientist, 98, 486–493. doi:10.1511/2010.87.486.
Floyd Tenery M. (2005). La visita. In N. González, L. Moll, & C. Amanti, C. (Eds.) Funds of knowledge: Theorizing practice in households, communities, and classrooms. (pp. 119–130). Mahwah, NJ: Lawrence Erlbaum.
Gerdes, P. (1988). On possible uses of traditional Angolan sand drawings in the mathematics classroom. Educational Studies in Mathematics, 19, 3–22. doi:10.1007/BF00428382.
González, N. (2008). What is culture? In A. S. Rosebery & B. Warren (Eds.), Teaching science to English language learners: building on students’ strengths (pp. 89–97). Arlington, VA: National Science Teachers Association.
González, N., Andrade, R., Civil, M., & Moll, L. C. (2001). Bridging funds of distributed knowledge: Creating zones of practices in mathematics. Journal of Education for Students Placed at Risk, 6, 115–132. doi:10.1207/S15327671ESPR0601-2_7.
González, N., Civil, M., Andrade, R., & Fonseca, J. D., (1997). A bridge to the many faces of mathematics: Exploring the household mathematical experiences of bilingual students. Paper presented at the annual meeting of the American Educational Research Association (AERA), Chicago, IL.
González, N., Moll, L., & Amanti, C. (Eds.). (2005). Funds of knowledge: Theorizing practice in households, communities, and classrooms. Mahwah, NJ: Lawrence Erlbaum.
Gutiérrez, K. D., Baquedano-López, P., & Tejeda, C. (1999). Rethinking diversity: Hybridity and hybrid language practices in the third space. Mind, Culture, and Activity: An International Journal, 6, 286–303. doi:10.1080/10749039909524733.
Harris, M. (1987). An example of traditional women’s work as a mathematics resource. For the Learning of Mathematics, 7(3), 26–28.
Knijnik, G. (2004). Lessons for research with a social movement: A voice from the South. In P. Valero & R. Zevenbergen (Eds.), Researching the socio-political dimensions of mathematics education (pp. 125–141). Boston, MA: Kluwer.
Lave, J. (1996). Teaching, as learning, in practice. Mind, Culture, and Activity: An International Journal, 3(3), 149–164. doi:10.1207/s15327884mca0303_2.
Lee, C., Spencer, M. B., & Harpalani, V. (2003). “Every shut eye ain’t sleep”: Studying how people live culturally. Educational Researcher, 32(5), 6–13. doi:10.3102/0013189X032005006.
Mack, E., et al. (2012). Effective practices for creating transformative informal science education programs grounded in Native ways of knowing. Cultural Studies of Science Education, 7, 49–70. doi:10.1007/s11422-011-9374-y.
Masingila, J. O. (1994). Mathematics practice in carpet laying. Anthropology & Education Quarterly, 25, 430–462. doi:10.1525/aeq.1994.25.4.04x0531k.
Menéndez, J.M., Civil, M., & Mariño, V. (2009). Latino parents as teachers of mathematics: Examples of interactions outside the classroom. Paper presented at the annual meeting of the American Educational Research Association (AERA), San Diego, CA.
Millroy, W. (1992). An ethnographic study of the mathematical ideas of a group of carpenters. Journal for Research in Mathematics Education, Monograph number 5. doi:10.2307/749904
Moje, E. B., Collazo, T., Carrillo, R., & Marx, R. W. (2001). “Maestro, what is ‘quality’?” Language, literacy, and discourse in project-based science. Journal of Research in Science Teaching, 38, 469–498. doi:10.1002/tea.1014.
Moll, L. (1992). Bilingual classroom studies and community analysis: Some recent trends. Educational Researcher, 21(2), 20–24. doi:10.3102/0013189X021002020.
Moll, L. C., Amanti, C., Neff, D., & González, N. (2005). Funds of knowledge for teaching: Using a qualitative approach to connect homes and classrooms. In N. González, L. Moll, & C. Amanti (Eds.), Funds of knowledge: Theorizing practice in households, communities, and classrooms (pp. 71–87). Mahwah, NJ: Lawrence Erlbaum.
Moschkovich, J. (1999). Understanding the needs of Latino students in reform-oriented mathematics classrooms. In L. Ortiz-Franco, et al. (Eds.), Changing the faces of mathematics: Perspectives on Latinos (pp. 5–12). Reston, VA: NCTM.
Nasir, N., Rosebery, A., Warren, A., & Lee, C. D. (2006). Learning as a cultural process: Achieving equity through diversity. In R. K. Sawyer (Ed.), The Cambridge handbook of the learning sciences (pp. 489–504). Cambridge: Cambridge University Press.
National Governors Association Center for Best Practices & Council of Chief State School Officers. (2010). Common core state standards for mathematics. Washington, DC: National Governors Association Center for Best Practices & Council of Chief State School Officers.
Nunes, T. (1999). Mathematics learning as the socialization of the mind. Mind, Culture, and Activity: An International Journal, 6(1), 33–52. doi:10.1080/10749039909524712.
Nunes, T., Schliemann, A., & Carraher, D. (1993). Street mathematics and school mathematics. New York: Cambridge University Press.
Presmeg, N. (2007). The role of culture in teaching and learning mathematics. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 435–458). Charlotte, NC: Information Age Publishing.
Rennie, L., Feher, E., Dierking, L., & Falk, J. (2003). Toward an agenda for advancing research on science learning in out-of-school settings. Journal of Research in Science Teaching, 40, 112–120. doi:10.1002/tea.10067.
Resnick, L. B. (1987). Learning in school and out. Educational Researcher, 16(9), 13–20. doi:10.2307/1175725.
Rogoff, B. (1994). Developing understanding of the idea of communities of learners. Mind, Culture, and Activity: An International Journal, 1, 209–229. doi:10.1080/10749039409524673.
Solomon, J. (2003). Home-school learning of science: The culture of homes, and pupils’ difficult border crossing. Journal of Research in Science Teaching, 40, 219–233. doi:10.1002/tea.10073.
Spradbery, J. (1976). Conservative pupils? Pupil resistance to a curriculum innovation in mathematics. In G. Whitty & M. Young (Eds.), Explorations in the politics of school knowledge (pp. 236–243). Driffield, England: Nafferton.