Giáo dục STEAM: phân tích bibliometrics về hiệu suất và từ đồng nghĩa trong Web of Science
Tóm tắt
Từ khóa
#STEAM; giáo dục; phân tích bibliometrics; cơ sở dữ liệu Web of Science; hiệu suất học thuật; từ đồng nghĩaTài liệu tham khảo
Angel, A., & Salgado, M. (2018). Land Art Math: Una actividad STEAM para fomentar la competencia matemática en Educación Infantil. Edma 0-6: Educación Matemática en la Infancia, 7(1), 1–11 http://www.edma0-6.es/index.php/edma0-6/article/view/48.
Anisimova, T. I., Sabirova, F. M., & Shatunova, O. V. (2020). Formation of design and research competencies in future teachers in the framework of STEAM education. International Journal of Emerging Technologies in Learning, 15(2), 204–217 https://doi.org/10.3991/ijet.v15i02.11537.
Anito, J. J. C., & Morales, M. P. E. (2019). The Pedagogical Model of Philippine STEAM Education: drawing implications for the reengineering of Philippine STEAM learning ecosystem. Universal Journal of Educational Research, 7(12), 2662–2669 https://doi.org/10.13189/ujer.2019.071213.
Bassachs, M., Cañabate, D., Nogué, L., Serra, T., Bubnys, R., & Colomer, J. (2020). Fostering critical reflection in primary education through STEAM approaches. Education in Science, 10(12), 1–14 https://doi.org/10.3390/educsci10120384.
Bati, K., Yetişir, M. I., Çalişkan, I., Gunes, G., & Saçan, E. G. (2018). Teaching the concept of time: a steam-based program on computational thinking in science education. Cogent Education, 5(1), 1–16 https://doi.org/10.1080/2331186X.2018.1507306.
Bazler, J. A., & Van Sickle, M. L. (2017). Cases on STEAM education in practice. IGI Global. https://doi.org/10.4018/978-1-5225-2334-5 Accessed 23 Jan 2021.
Biesta, G. (2015). Freeing teaching from learning: opening up existential possibilities in educational relationships. Studies in Philosophy and Education, 34, 229–243 https://doi.org/10.1007/s11217-014-9454-z.
Burnard, P., & Colucci-Gray, L. (2019). Why science and art creativities matter. (Re-)Configuring STEAM for future-making education. Brill/sense. https://doi.org/10.1163/9789004421585 Accessed 16 Jan 2021.
Bush, S., Cook, K. L., Edelen, D., & Cox, R. (2020). Elementary students’ STEAM perceptions: extending frames of reference through transformative learning experiences. The Elementary School Journal, 120(4), 692–714 https://doi.org/10.1086/708642.
Callon, M., Courtial, J. P., & Laville, F. (1991). Coword analysis as a tool for describing the network of interactions between basic and technological research: The case of polymer chemsitry. Scientometrics, 22, 155–205 https://doi.org/10.1007/BF02019280.
Campos, N., Ramos, M., & Moreno-Guerrero, A. J. (2019). Realidad virtual y motivación en el contexto educativo: Estudio bibliométrico de los últimos veinte años de Scopus. Alteridad, 15(1), 47–60 https://doi.org/10.17163/alt.v15n1.2020.04.
Carmona-Serrano, N., López-Belmonte, J., Cuesta-Gómez, J. L., & Moreno-Guerrero, A. J. (2020a). Documentary analysis of the scientific literature on autism and technology in Web of Science. Brain Sciences, 10(12), 1–17 https://doi.org/10.3390/brainsci10120985.
Carmona-Serrano, N., López-Belmonte, J., López-Núñez, J. A., & Moreno-Guerrero, A. J. (2020b). Trends in autism research in the field of education in Web of Science: a bibliometric study. Brain Sciences, 10(12), 1–22 https://doi.org/10.3390/brainsci10121018.
Carmona-Serrano, N., Moreno-Guerrero, A. J., Marín-Marín, J. A., & López-Belmonte, J. (2021). Evolution of the autism literature and the influence of parents: a scientific mapping in Web of Science. Brain Sciences, 11(1), 1–16 https://doi.org/10.3390/brainsci11010074.
Casado, R., & Checa, M. (2020). Robótica y Proyectos STEAM: Desarrollo de la creatividad en las aulas de Educación Primaria. Píxel-Bit: Revista de Medios y Educación, 58, 51–69 https://doi.org/10.12795/pixelbit.73672.
Chen, C. C., & Huang, P. H. (2020). The effects of STEAM-based mobile learning on learning achievement and cognitive load. Interactive Learning Environments, 1–17 https://doi.org/10.1080/10494820.2020.1761838.
Chien, Y. H., & Chu, P. Y. (2017). The different learning outcomes of high school and college students on a 3D-printing STEAM engineering design curriculum. International Journal of Science and Mathematics Education, 16, 1047–1064 https://doi.org/10.1007/s10763-017-9832-4.
Chu, H. E., Martin, S. N., & Park, J. A. (2018). Theoretical framework for developing an intercultural STEAM program for Australian and Korean students to enhance science teaching and learning. International Journal of Science and Mathematics Education, 17, 1251–1266 https://doi.org/10.1007/s10763-018-9922-y.
Colucci-Gray, L. (2019). Developing an ecological view through STEAM pedagogies in science education. In P. Burnard & L. Colucci-Gray (Eds.), Why Science and Art Creativities Matter. Configuring STEAM for future-making education (pp. 1–19). Brill/Sense. https://doi.org/10.1163/9789004421585_008. Accessed 20 Jan 2021.
Colucci-Gray, L., Burnard, P., Cooke, C. F., Davies, R., Burnard, P., Gray, D. S., & Trowdale, J. (2017). Reviewing the potential and challenges of developing STEA London: British Educational research Association.
Colucci-Gray, L., Burnard, P., Gray, D., & Cooke, C. (2019). A critical review of STEAM (Science, Technology, Engineering, Arts, and Mathematics). In P. Thomson (Ed.), Oxford Research Encyclopedia of Education (pp. 1–26). Oxford: Oxford University Press https://doi.org/10.1093/acrefore/9780190264093.013.398.
Connor, A. M., Karmokar, S., & Whittington, C. (2015). From STEM to STEAM: strategies for enhancing engineering & technology education. International Journal of Engineering Pedagogy, 5(2), 37–47 https://doi.org/10.3991/ijep.v5i2.4458.
Conradty, C., & Bogner, F. X. (2020). STEAM teaching professional development works: effects on students’ creativity and motivation. Smart Learning Environments, 7, 1–20 https://doi.org/10.1186/s40561-020-00132-9.
Conradty, C., Sotiriou, S. A., & Bogner, F. X. (2020). How creativity in STEAM modules intervenes with self-efficacy and motivation. Education in Science, 10(3), 1–15 https://doi.org/10.3390/educsci10030070.
Cook, K., Bush, S., Cox, R., & Edelen, D. (2020). Development of elementary teachers’ science, technology, engineering, arts, and mathematics planning practices. School Science and Mathematics, 120(4), 197–208 https://doi.org/10.1111/ssm.12400.
De la Garza, A. (2019). Internationalizing the curriculum for STEAM (STEM + Arts and Humanities): from intercultural competence to cultural humility. Journal of Studies in International Education, 25(2), 123–135 https://doi.org/10.1177/1028315319888468.
Diego-Mantecón, J. M., Blanco, T. F., Ortiz-Laso, Z., & Lavicza, Z. (2020). STEAM projects with KIKS format for developing key competences. Comunicar, 66, 33–43 https://doi.org/10.3916/C66-2021-03.
Dolgopolovas, V., & Dagiene, V. (2021). Computational thinking: enhancing STEAM and engineering education, from theory to practice. Computer Applications in Engineering Education, 29(66), 5–11 https://doi.org/10.1002/cae.22382.
Greca, I. M., Ortiz-Revilla, J., & Arriassecq, I. (2021). Design and evaluation of a STEAM teaching-learning sequence for primary education. Revista Eureka, 18(1), 1–19 https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2021.v18.i1.1802.
Hadinugrahaningsih, T., Rahmawati, Y., & Sastrapraja, A. (2017). Developing 21st century skills in chemistry classrooms: opportunities and challenges of STEAM integration. AIP Conference Proceedings, 1868, 030008 https://doi.org/10.1063/1.4995107.
Harris, A., & Bruin, L. R. (2017). Secondary school creativity, teacher practice and STEAM education: An international study. Journal of Educational Change, 19, 153–179 https://doi.org/10.1007/s10833-017-9311-2.
Herrera-Viedma, E., López-Robles, J. R., Guallar, J., & Cobo, M. J. (2020). Global trends in coronavirus research at the time of Covid-19: A general bibliometric approach and content analysis using SciMAT. El Profesional de la Información, 29(3), 1–20 https://doi.org/10.3145/epi.2020.may.22.
Herro, D., Quigley, C., Andrews, J., & Delacruz, G. (2017). Co-measure: developing an assessment for student collaboration in STEAM activities. International Journal of STEM Education, 4(26), 1–12 https://doi.org/10.1186/s40594-017-0094-z.
Hinojo-Lucena, F. J., Dúo-Terrón, P., Ramos, M., Rodríguez-Jiménez, C., & Moreno-Guerrero, A. J. (2020). Scientific performance and mapping of the term STEM in education on the Web of Science. Sustainability, 12(6), 1–20 https://doi.org/10.3390/su12062279.
Hong, J. C., Ye, J. H., Ho, Y. J., & Ho, H. Y. (2020). Developing inquiry and hands-on learning model to guide STEAM lesson planning for kindergarten children. Journal of Baltic Science Education, 19(6), 908–922 https://doi.org/10.33225/jbse/20.19.908.
How, M. L., & Hung, W. L. D. (2019). Educing AI-thinking in science, technology, engineering, arts, and mathematics (STEAM) education. Education in Science, 9(3), 1–41 https://doi.org/10.3390/educsci9030184.
Jesionkowska, J., Wild, F., & Deval, Y. (2020). Active learning augmented reality for STEAM education—a case study. Education in Science, 10(8), 1–15 https://doi.org/10.3390/educsci10080198.
Juskeviciene, A. (2020). STEAM teacher for a day: a case study of teachers’ perspectives on computational thinking. Informatics in Education, 19(1), 33–50 https://doi.org/10.15388/infedu.2020.03.
Juskeviciene, A., Stupurienė, G., & Jevsikova, T. (2020). Computational thinking development through physical computing activities in STEAM education. Computer Applications in Engineering Education, 29, 175–190 https://doi.org/10.1002/cae.22365.
Kajamaa, A., & Kumpulainen, K. (2020). Students’ multimodal knowledge practices in a makerspace learning environment. International Journal of Computer-Supported Collaborative Learning, 15, 411–444 https://doi.org/10.1007/s11412-020-09337-z.
Kim, P. W. (2016). The wheel model of STEAM education based on traditional Korean scientific contents. EURASIA Journal of Mathematics, Science & Technology Education, 12(9), 2353–2371 https://doi.org/10.12973/eurasia.2016.1263a.
Knochel, A. (2019). STEAM It Up. Digital fabrication, transdisciplinary zones, and art education. In A. Wexler, & V. Sabbaghi (Eds.), Bridging Communities through Socially Engaged Art, (pp. 131–136). New York: Routledge.
Lin, C. L., & Tsai, C. Y. (2021). The effect of a pedagogical STEAM model on students’ project competence and learning motivation. Journal of Science Education and Technology, 30, 112–120 https://doi.org/10.1007/s10956-020-09885-x.
López-Belmonte, J., Marín-Marín, J. A., Soler-Costa, R., & Moreno-Guerrero, A. J. (2020b). Arduino advances in Web of Science. A scientific mapping of literary production. IEEE Access, 8, 128674–128682 https://doi.org/10.1109/ACCESS.2020.3008572.
López-Belmonte, J., Moreno-Guerrero, A. J., López-Núñez, J. A., & Hinojo-Lucena, F. J. (2020a). Augmented reality in education. A scientific mapping in Web of Science. Interactive Learning Environments, 1–15 https://doi.org/10.1080/10494820.2020.1859546.
López-Belmonte, J., Segura-Robles, A., Moreno-Guerrero, A. J., & Parra-González, M. E. (2021). Robotics in education: a scientific mapping of the literature in Web of Science. Electronics, 10(3), 291 https://doi.org/10.3390/electronics10030291.
López-Robles, J. R., Otegi-Olaso, J. R., Porto, I., & Cobo, M. J. (2019). 30 years of intelligence models in management and business: a bibliometric review. International Journal of Information Management, 48, 22–38 https://doi.org/10.1016/j.ijinfomgt.2019.01.013.
Lu, C. C., & Ma, S. Y. (2019). Design STEAM course to train STEAM literacy of primary students: taking “Animal Mimicry Beast” as an example. Journal of Research in Education Sciences, 64(3), 85–118 https://doi.org/10.6209/JORIES.201909_64(3).0004.
Lytle, N., Cateté, V., Boulden, D., Dong, Y., Houchins, J., Milliken, A., … Barnes, T. (2019). Use, modify, create comparing computational thinking lesson progressions for STEM classes. Conference on Innovation and Technology in Computer Science Education, 395–401 https://doi.org/10.1145/3304221.3319786.
Marín-Marín, J. A., Soler-Costa, R., Moreno-Guerrero, A. J., & López-Belmonte, J. (2020). Makey Makey as an interactive robotic tool for high school students’ learning in multicultural contexts. Education in Science, 10(9), 1–14 https://doi.org/10.3390/educsci10090239.
Max, A. L., Schmoll, I., Uhl, P., Huwer, J., Lukas, S., Mueller, W., & Weitzel, H. (2020). Integration of a teaching-learning lab and a pedagogical makerspace into a module for media education for steam teacher students. INTED2020 Proceedings, 2050–2059 https://doi.org/10.21125/inted.2020.0645.
Mengmeng, Z., Xiantong, Y., & Xinghua, W. (2019). Construction of STEAM curriculum model and case design in kindergarten. American Journal of Educational Research, 7(7), 485–490 https://doi.org/10.12691/education-7-7-8.
Montero-Díaz, J., Cobo, M. J., Gutiérrez-Salcedo, M., Segado-Boj, F., & Herrera-Viedma, E. (2018). Mapeo científico de la Categoría «Comunicación» en WoS (1980-2013). Comunicar, 26(55), 81–91 https://doi.org/10.3916/C55-2018-08.
Moral-Muñoz, J. A., Herrera-Viedma, E., Santisteban-Espejo, A., & Cobo, M. J. (2020). Software tools for conducting bibliometric analysis in science: an up-to-date review. El Profesional de la Información, 29(1), 1–20 https://doi.org/10.3145/epi.2020.ene.03.
Moreno-Guerrero, A. J., Gómez-García, G., López-Belmonte, J., & Rodríguez-Jiménez, C. (2020a). Internet addiction in the Web of Science database: a review of the literature with scientific mapping. International Journal of Environmental Research and Public Health, 17(8), 1–16 https://doi.org/10.3390/ijerph17082753.
Moreno-Guerrero, A. J., López-Belmonte, J., Marín-Marín, J. A., & Soler-Costa, R. (2020b). Scientific development of educational artificial intelligence in Web of Science. Future Internet, 12(8), 1–17 https://doi.org/10.3390/fi12080124.
Moreno-Guerrero, A. J., Rodríguez-García, A. M., Ramos, M., & Rodríguez, C. (2021a). Competencia digital docente y el uso de la realidad aumentada en la enseñanza de ciencias en Educación Secundaria Obligatoria. Revista Fuentes, 23(1), 108–124 https://doi.org/10.12795/revistafuentes.2021.v23.i1.12050.
Moreno-Guerrero, A. J., Soler-Costa, R., Marín-Marín, J., & López-Belmonte, J. (2021b). Flipped learning and good teaching practices in secondary education. Comunicar, 29(68), 1–11 https://doi.org/10.3916/C68-2021-09.
Ng, W., & Fergusson, J. (2020). Engaging high school girls in interdisciplinary STEAM. Science Education International, 31(3), 283–294 https://doi.org/10.33828/sei.v31.i3.7.
Oliveros-Ruiz, M. A. (2019). STEAM as a tool to encourage engineering studies. Revista Científica, 35(2), 158–166 https://doi.org/10.14483/23448350.14526.
Perignat, E., & Katz-Buonincontro, J. (2018). STEAM in practice and research: an integrative literature review. Thinking Skills and Creativity, 31, 31–43 https://doi.org/10.1016/j.tsc.2018.10.002.
Quigley, C. F., & Herro, D. (2016). “Finding the joy in the unknown”: implementation of STEAM teaching practices in middle school science and math classrooms. Journal of Science Education and Technology, 25, 410–426 https://doi.org/10.1007/s10956-016-9602-z.
Real, R., & Vargas, J. M. (1996). The probabilistic basis of Jaccard’s index of similarity. Systematic Biology, 45(3), 380–385 https://doi.org/10.1093/sysbio/45.3.380.
Rodríguez, J. D., Moreno-León, J., Román-González, M., & Robles, G. (2020). LearningML: a tool to foster computational thinking skills through practical artificial intelligence projects. Revista de Educación a Distancia (Red), 20(63), 1–37 https://doi.org/10.6018/red.410121.
Ruiz, F., Zapatera, A., & Montes, N. (2020). Curriculum analysis and design, implementation, and validation of a STEAM project through educational robotics in primary education. Computer Applications in Engineering Education, 29(1), 160–174 https://doi.org/10.1002/cae.22373.
Salmi, H. S., Thuneberg, H., & Bogner, F. X. (2020). Is there deep learning on Mars? STEAM education in an inquiry-based out-of-school setting. Interactive Learning Environments, 1–13 https://doi.org/10.1080/10494820.2020.1823856.
Segarra, V. A., Natalizio, B., Falkenberg, C. V., Pulford, S., & Holmes, R. M. (2018). STEAM: using the arts to train well-rounded and creative scientists. Journal of Microbiology and Biology Education, 19(1), 1–7 https://doi.org/10.1128/jmbe.v19i1.1360.
Sochacka, N. W., Guyotte, K. W., & Walther, J. (2016). Learning together: a collaborative autoethnographic exploration of STEAM (STEM plus the arts) education. Journal of Science Education, 105(1), 15–42 https://doi.org/10.1002/jee.20112.
Soler-Costa, R., Moreno-Guerrero, A. J., López-Belmonte, J., & Marín-Marín, J.-A. (2021). Co-word analysis and academic performance of the term TPACK in Web of Science. Sustainability, 13(3), 1–20 https://doi.org/10.3390/su13031481.
Suárez, A., García, D., Martínez, P. A., & Martos, J. (2018). Contribution of educational robotics in the acquisition of mathematical knowledge in primary education. Magister, 30(1), 43–54 https://doi.org/10.17811/msg.30.1.2018.43-54.
Taljaard, J. (2016). A review of multi-sensory technologies in a Science, Technology, Engineering, Arts and Mathematics (STEAM) classroom. Journal of Learning Design, 9(2), 46–55 https://doi.org/10.5204/jld.v9i2.274.
Tan, W. L., Samsudin, M. A., Ismail, M. E., & Ahmad, N. J. (2020). Gender differences in students’ achievements in learning concepts of electricity via STEAM integrated approach utilizing scratch. Problems of Education in the 21st Century, 78(3), 423–448 https://doi.org/10.33225/pec/20.78.423.
Taylor, P. (2018). Enriching STEM with the arts to better prepare 21st century citizens. AIP Conference Proceedings, 1923(1), 1–5 https://doi.org/10.1063/1.5019491.
Togou, M. A., Lorenzo, C., Cornetta, G., & Muntean, G. M. (2019). Assessing the effectiveness of using Fab Lab-based learning in schools on K-12 students’ attitude toward STEAM. IEEE Transactions on Education, 63(1), 56–62 https://doi.org/10.1109/TE.2019.2957711.
Tuomi, I. (2018). The impact of artificial intelligence on learning, teaching, and education. Policies for the future, Eds. Cabrera, M., Vuorikari, R & Punie, Y. Publications Office of the European Union, 1–47 https://doi.org/10.2760/12297.
Webb, D. L., & LoFaro, K. P. (2020). Sources of engineering teaching self-efficacy in a STEAM methods course for elementary preservice teachers. School Science and Mathematics, 120(4), 209–219 https://doi.org/10.1111/ssm.12403.
Wu, Y., Cheng, J., & Koszalka, T. A. (2021). Transdisciplinary approach in middle school: a case study of co-teaching practices in STEAM teams. International Journal of Education in Mathematics, Science, and Technology, 9(1), 138–162 https://doi.org/10.46328/ijemst.1017.