SSEP N20 and P25 amplitudes predict poor and good neurologic outcomes after cardiac arrest

Annals of Intensive Care - Tập 12 - Trang 1-11 - 2022
Sarah Benghanem1,2,3,4, Lee S. Nguyen5, Martine Gavaret2,6,4, Jean-Paul Mira1,2, Frédéric Pène1,2, Julien Charpentier1, Angela Marchi2,6,4, Alain Cariou1,2,3,7
1Medical ICU, Cochin Hospital, AP-HP, Paris, France
2Medical School, University of Paris, Paris, France
3After ROSC Network, Paris, France
4INSERM 1266, Institut de Psychiatrie et Neurosciences de Paris-IPNP, Sainte Anne Hospital, Paris, France
5CMC Ambroise Paré, Research and Innovation, Neuilly-sur-Seine, France
6Neurophysiology Department, GHU Psychiatrie et Neurosciences, Sainte Anne Hospital, Paris, France
7Paris-Cardiovascular-Research-Center (Sudden-Death-Expertise-Center), INSERM U970, Paris, France

Tóm tắt

To assess in comatose patients after cardiac arrest (CA) if amplitudes of two somatosensory evoked potentials (SSEP) responses, namely, N20-baseline (N20-b) and N20–P25, are predictive of neurological outcome. Monocentric prospective study in a tertiary cardiac center between Nov 2019 and July-2021. All patients comatose at 72 h after CA with at least one SSEP recorded were included. The N20-b and N20–P25 amplitudes were automatically measured in microvolts (µV), along with other recommended prognostic markers (status myoclonus, neuron-specific enolase levels at 2 and 3 days, and EEG pattern). We assessed the predictive value of SSEP for neurologic outcome using the best Cerebral Performance Categories (CPC1 or 2 as good outcome) at 3 months (main endpoint) and 6 months (secondary endpoint). Specificity and sensitivity of different thresholds of SSEP amplitudes, alone or in combination with other prognostic markers, were calculated. Among 82 patients, a poor outcome (CPC 3–5) was observed in 78% of patients at 3 months. The median time to SSEP recording was 3(2–4) days after CA, with a pattern “bilaterally absent” in 19 patients, “unilaterally present” in 4, and “bilaterally present” in 59 patients. The median N20-b amplitudes were different between patients with poor and good outcomes, i.e., 0.93 [0–2.05]µV vs. 1.56 [1.24–2.75]µV, respectively (p < 0.0001), as the median N20–P25 amplitudes (0.57 [0–1.43]µV in poor outcome vs. 2.64 [1.39–3.80]µV in good outcome patients p < 0.0001). An N20-b > 2 µV predicted good outcome with a specificity of 73% and a moderate sensitivity of 39%, although an N20–P25 > 3.2 µV was 93% specific and only 30% sensitive. A low voltage N20-b < 0.88 µV and N20–P25 < 1 µV predicted poor outcome with a high specificity (sp = 94% and 93%, respectively) and a moderate sensitivity (se = 50% and 66%). Association of “bilaterally absent or low voltage SSEP” patterns increased the sensitivity significantly as compared to “bilaterally absent” SSEP alone (se = 58 vs. 30%, p = 0.002) for prediction of poor outcome. In comatose patient after CA, both N20-b and N20–P25 amplitudes could predict both good and poor outcomes with high specificity but low to moderate sensitivity. Our results suggest that caution is needed regarding SSEP amplitudes in clinical routine, and that these indicators should be used in a multimodal approach for prognostication after cardiac arrest.

Tài liệu tham khảo

Lemiale V, Dumas F, Mongardon N, Giovanetti O, Charpentier J, Chiche J-D, et al. Intensive care unit mortality after cardiac arrest: the relative contribution of shock and brain injury in a large cohort. Intensive Care Med. 2013;39:1972–80. https://doi.org/10.1007/s00134-013-3043-4. Nolan JP, Sandroni C, Böttiger BW, Cariou A, Cronberg T, Friberg H, et al. European Resuscitation Council and European Society of Intensive Care Medicine guidelines 2021: post-resuscitation care. Intensive Care Med. 2021;47:369–421. https://doi.org/10.1007/s00134-021-06368-4. Soar J, Maconochie I, Wyckoff MH, Olasveengen TM, Singletary EM, Greif R, et al. International consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations: summary from the basic life support; advanced life support; pediatric life support; neonatal life support; education, implementation, and teams; and first aid task forces. Circulation. 2019;2019:140. https://doi.org/10.1161/CIR.0000000000000734. André-Obadia N, Zyss J, Gavaret M, Lefaucheur J-P, Azabou E, Boulogne S, et al. Recommendations for the use of electroencephalography and evoked potentials in comatose patients. Neurophysiol Clin. 2018;48:143–69. https://doi.org/10.1016/j.neucli.2018.05.038. Comanducci A, Boly M, Claassen J, De Lucia M, Gibson RM, Juan E, et al. Clinical and advanced neurophysiology in the prognostic and diagnostic evaluation of disorders of consciousness: review of an IFCN-endorsed expert group. Clin Neurophysiol. 2020;131:2736–65. https://doi.org/10.1016/j.clinph.2020.07.015. Pruvost-Robieux, E., Marchi, A., Martinelli, I., Bouchereau, E., & Gavaret, M. (2021). Evoked-and event-related potentials as biomarkers of consciousness state and recovery. J Clin Neurophysiol 2021. n.d. van Putten MJAM, Jansen C, Tjepkema-Cloostermans MC, Beernink TMJ, Koot R, Bosch F, et al. Postmortem histopathology of electroencephalography and evoked potentials in postanoxic coma. Resuscitation. 2019;134:26–32. https://doi.org/10.1016/j.resuscitation.2018.12.007. van Putten MJAM. The N20 in post-anoxic coma: are you listening? Clin Neurophysiol. 2012;123:1460–4. https://doi.org/10.1016/j.clinph.2011.10.049. Oh SH, Park KN, Choi SP, Oh JS, Kim HJ, Youn CS, et al. Beyond dichotomy: patterns and amplitudes of SSEPs and neurological outcomes after cardiac arrest. Crit Care. 2019;23:224. https://doi.org/10.1186/s13054-019-2510-x. Endisch C, Storm C, Ploner CJ, Leithner C. Amplitudes of SSEP and outcome in cardiac arrest survivors: a prospective cohort study. Neurology. 2015;85:1752–60. https://doi.org/10.1212/WNL.0000000000002123. Barbella G, Novy J, Marques-Vidal P, Oddo M, Rossetti AO. Added value of somato-sensory evoked potentials amplitude for prognostication after cardiac arrest. Resuscitation. 2020;149:17–23. https://doi.org/10.1016/j.resuscitation.2020.01.025. Scarpino M, Lolli F, Lanzo G, Carrai R, Spalletti M, Valzania F, et al. SSEP amplitude accurately predicts both good and poor neurological outcome early after cardiac arrest; a post-hoc analysis of the ProNeCA multicentre study. Resuscitation. 2021;163:162–71. https://doi.org/10.1016/j.resuscitation.2021.03.028. Nolan JP, Soar J, Cariou A, Cronberg T, Moulaert VRM, Deakin CD, et al. European Resuscitation Council and European Society of Intensive Care Medicine 2015 guidelines for post-resuscitation care. Intensive Care Med. 2015;41:2039–56. https://doi.org/10.1007/s00134-015-4051-3. Paul M, Bougouin W, Geri G, Dumas F, Champigneulle B, Legriel S, et al. Delayed awakening after cardiac arrest: prevalence and risk factors in the Parisian registry. Intensive Care Med. 2016;42:1128–36. https://doi.org/10.1007/s00134-016-4349-9. Ely EW, Truman B, Shintani A, Thomason JWW, Wheeler AP, Gordon S, et al. Monitoring sedation status over time in ICU patients: reliability and validity of the Richmond Agitation-Sedation Scale (RASS). JAMA. 2003;289:2983–91. https://doi.org/10.1001/jama.289.22.2983. Hirsch LJ, et al. American Clinical Neurophysiology Society’s standardized critical care EEG terminology: 2021 version. J Clin Neurophysiol. 2021;38(1):1. Westhall E, Rossetti AO, Van Rootselaar AF, Kjaer TW, Horn J, Ullén S, et al. Standardized EEG interpretation accurately predicts prognosis after cardiac arrest. Neurol. 2016;86:1482–90. Taccone FS, Horn J, Storm C, Cariou A, Sandroni C, Friberg H, et al. Death after awakening from post-anoxic coma: the “Best CPC” project. Crit Care. 2019;23:107. https://doi.org/10.1186/s13054-019-2405-x. Cohen JF, Korevaar DA, Altman DG, Bruns DE, Gatsonis CA, Hooft L, et al. STARD 2015 guidelines for reporting diagnostic accuracy studies: explanation and elaboration. BMJ Open. 2016;6: e012799. https://doi.org/10.1136/bmjopen-2016-012799. Glimmerveen AB, Keijzer HM, Ruijter BJ, Tjepkema-Cloostermans MC, van Putten MJAM, Hofmeijer J. Relevance of somatosensory evoked potential amplitude after cardiac arrest. Front Neurol. 2020;11:335. https://doi.org/10.3389/fneur.2020.00335. Glimmerveen AB, Ruijter BJ, Keijzer HM, Tjepkema-Cloostermans MC, van Putten MJAM, Hofmeijer J. Association between somatosensory evoked potentials and EEG in comatose patients after cardiac arrest. Clin Neurophysiol. 2019;130:2026–31. https://doi.org/10.1016/j.clinph.2019.08.022. Endisch C, Westhall E, Kenda M, Streitberger KJ, Kirkegaard H, Stenzel W, et al. Hypoxic-ischemic encephalopathy evaluated by brain autopsy and neuroprognostication after cardiac arrest. JAMA Neurol. 2020;77:1430. https://doi.org/10.1001/jamaneurol.2020.2340. Carrai R, Scarpino M, Lolli F, Spalletti M, Lanzo G, Peris A, Lazzeri C, Amantini A, Grippo A. Early-SEPs’ amplitude reduction is reliable for poor-outcome prediction after cardiac arrest? Acta Neurol Scand. 2019. https://doi.org/10.1111/ane.13030 (Epub 2018 Oct 7). Elmer J, Kane N. Evoking signs of recovery after cardiac arrest: The SSEP ‘present versus absent’ dichotomy has shifted, now size matters. Resuscitation. 2021;163:195–7. https://doi.org/10.1016/j.resuscitation.2021.04.018. Zandbergen EGJ. Inter observed variation in the interpretation of SSEPs in anoxic-ischaemic coma. Clin Neurophysiol. 2006. https://doi.org/10.1016/j.clinph.2006.03.018. Fredland A, Backman S, Westhall E. Stratifying comatose postanoxic patients for somatosensory evoked potentials using routine EEG. Resuscitation. 2019;143:17–21. https://doi.org/10.1016/j.resuscitation.2019.07.027. Beuchat I, Novy J, Barbella G, Oddo M, Rossetti AO. EEG patterns associated with present cortical SSEP after cardiac arrest. Acta Neurol Scand. 2020;142:181–5. https://doi.org/10.1111/ane.13264. Roman-Pognuz E, Elmer J, Guyette FX, Poillucci G, Lucangelo U, Berlot G, et al. Multimodal long-term predictors of outcome in out of hospital cardiac arrest patients treated with targeted temperature management at 36 °C. J Clin Med. 2021;10:1331. https://doi.org/10.3390/jcm10061331. Admiraal MM, Ramos LA, Delgado Olabarriaga S, Marquering HA, Horn J, van Rootselaar AF. Quantitative analysis of EEG reactivity for neurological prognostication after cardiac arrest. Clin Neurophysiol. 2021;132:2240–7. https://doi.org/10.1016/j.clinph.2021.07.004. Asgari S, Moshirvaziri H, Scalzo F, Ramezan-Arab N. Quantitative measures of EEG for prediction of outcome in cardiac arrest subjects treated with hypothermia: a literature review. J Clin Monit Comput. 2018;32:977–92. https://doi.org/10.1007/s10877-018-0118-3. Bongiovanni F, Romagnosi F, Barbella G, Di Rocco A, Rossetti AO, Taccone FS, et al. Standardized EEG analysis to reduce the uncertainty of outcome prognostication after cardiac arrest. Intensive Care Med. 2020;46:963–72. https://doi.org/10.1007/s00134-019-05921-6.