SDS-Induced Conformational Changes and Inactivation of the Bacterial Chaperonin GroEL

Journal of Protein Chemistry - Tập 18 - Trang 653-657 - 1999
Sen Li1, Liao-Teng Wang1,2, Hai-Meng Zhou1,3
1Department of Biological Science and Biotechnology, Tsinghua University, Beijing, China
2Department of Biochemistry, University of Wisconsin-Madison, Madison
3National Laboratory of Macromolecules, Institute of Biophysics, Beijing, China

Tóm tắt

The inactivation and conformational changes of the bacterial chaperonin GroEL have been studied in SDS solutions with different concentrations. The results show that increasing the SDS concentration caused the intrinsic fluorescence emission intensity to increase and the emission peak to slightly blue-shift, indicating that increasing the SDS concentration can cause the hydrophobic surface to be slightly buried. The changes in the ANS-binding fluorescence with increasing SDS concentration also showed that the GroEL hydrophobic surface decreased. At low SDS concentrations, less than 0.3 mM, the GroEL ATPase activity increased with increasing SDS concentration. Increasing the SDS concentration beyond 0.3 mM caused the GroEL ATPase activity to quickly decrease. At high SDS concentrations, above 0.8 mM, the residual GroEL ATPase activity was less than 10% of the original activity, but the GroEL molecule maintained its native conformation (as indicated by the exposure of buried thiol groups, electrophoresis, and changes of CD spectra). The above results suggest that the conformational changes of the active site result in the inactivation of the ATPase even though the GroEL molecule does not markedly unfold at low SDS concentrations.

Tài liệu tham khảo

Bochkarava, E. S., Bochkareva, E. S., Lissin, N. M., Flynn, G. C., Rothman, J. E., and Girshorich, A. S. (1992). J. Biol. Chem. 267, 6796-6800. Braig, K., Otwinowski, Z., Hegde, R., Boisvert, D. C., Joachimiak, A., Horwich, A. L., and Sigler, P. B. (1994). Nature 371, 578-586. Fan, Y. X., Ju, M., Zhou, J. M., and Tsou, C. L. (1996). Biochem. J. 315, 97-102. Gorovits, B. M., and Horowitz, P. M. (1995). Biochemistry 34, 13928-13933. Hartl, F. V., Hlodam, R., and Langer, T. (1994). Trends Biochem. Sci. 217, 20-25. He, B., Zhang, Y., Zhang, T., Wang, H. R., and Zhou, H. M. (1995). J. Protein Chem. 14, 349-357. Hunt, J. F., Weaver, A. J., Landry, S. J., Gierasch, L., and Deisenhofer, J. (1996). Nature 379, 37-45. Lill, R., Dowhan, W., and Wickner, W. (1990). Cell 60, 271-280. Martin, J., Mortin, J., Langer, T., Botera, R., Schramel, A., Horwich, A. L., and Hortl, F. U. (1991). Nature 352, 36-42. Martin, J., Mayhew, M., Langer, T., and Hartl, F. V. (1993). Nature 366, 228-233. Mizobata, T., and Kawata, Y. (1994). Biochim. Biophys. Acta 1209, 83-88. Price, N. C., Kelly, S. M., Thomson, G. J., Coggins, J. R., Wood, S., and Maure, A. (1993). Biochim. Biophys. Acta 1161, 52-58. Rose, C., and Mandal, A. B. (1996). Int. J. Biol. Macromol. 18, 41-53. Schmidt, M., Buchner, J., Todd, M. J., Lorimer, G. H., and Biitamen, P. V. (1994). J. Biol. Chem. 269, 10304-10311. Stryer, L. (1965). J. Mol. Biol. 13, 482-495. Todd, M. J., Vritanen, P. V., and Lerimer, G. H. (1994). Science 265, 659-666. Wang, Z. F., Huang, M. Q., Zou, X. M., and Zhou, H. M. (1995). Biochim. Biophys. Acta 1251, 109-114. Ybarra, J., and Horowitz, P. M. (1995). J. Biol. Chem. 270, 22113-22115.