SCFA: mechanisms and functional importance in the gut

Proceedings of the Nutrition Society - Tập 80 Số 1 - Trang 37-49 - 2021
Camille Martin‐Gallausiaux1, Ludovica Marinelli2, Hervé M. Blottière2,3, Pierre Larraufie4, Nicolas Lapaque2
1University of Luxembourg, Luxembourg
2MICrobiologie de l'ALImentation au Service de la Santé
3MetaGenoPolis
4Physiologie de la Nutrition et du Comportement Alimentaire

Tóm tắt

In recent years, the importance of the gut microbiota in human health has been revealed and many publications have highlighted its role as a key component of human physiology. Owing to the use of modern sequencing approaches, the characterisation of the microbiome in healthy individuals and in disease has demonstrated a disturbance of the microbiota, or dysbiosis, associated with pathological conditions. The microbiota establishes a symbiotic crosstalk with their host: commensal microbes benefit from the nutrient-rich environment provided by the gut and the microbiota produces hundreds of proteins and metabolites that modulate key functions of the host, including nutrient processing, maintenance of energy homoeostasis and immune system development. Many bacteria-derived metabolites originate from dietary sources. Among them, an important role has been attributed to the metabolites derived from the bacterial fermentation of dietary fibres, namely SCFA linking host nutrition to intestinal homoeostasis maintenance. SCFA are important fuels for intestinal epithelial cells (IEC) and regulate IEC functions through different mechanisms to modulate their proliferation, differentiation as well as functions of subpopulations such as enteroendocrine cells, to impact gut motility and to strengthen the gut barrier functions as well as host metabolism. Recent findings show that SCFA, and in particular butyrate, also have important intestinal and immuno-modulatory functions. In this review, we discuss the mechanisms and the impact of SCFA on gut functions and host immunity and consequently on human health.

Từ khóa


Tài liệu tham khảo

Berndt, 2012, Butyrate increases IL-23 production by stimulated dendritic cells, Am J Physiol: Gastrointest Liver Physiol, 303, G1384

10.1006/anae.1997.0121

10.1007/BF01923605

10.1016/j.pharmthera.2014.04.004

10.1111/j.1440-1746.2006.04213.x

10.1210/en.2016-1384

10.1210/js.2018-00165

10.1371/journal.pone.0137429

10.1136/gut.21.9.793

10.1124/mol.115.102301

10.1038/s41467-017-02651-5

10.1074/jbc.M112.396259

10.1113/expphysiol.1991.sp003530

10.1111/jgh.12775

10.1038/ncomms2266

10.1113/jphysiol.2004.063859

10.1038/nature12820

Musch, 2001, SCFA Increase intestinal Na absorption by induction of NHE3 in rat colon and human intestinal C2/bbe cells, Am J Physiol: Gastrointest Liver Physiol, 280, G687

10.1016/j.immuni.2013.12.007

10.1038/nrmicro3344

10.1128/mBio.00770-17

10.4049/jimmunol.1600165

10.1038/nature18597

10.1002/jcp.24054

10.1073/pnas.0909122107

10.1136/gut.20.5.400

10.1371/journal.pone.0021205

10.1016/j.chom.2016.03.004

10.1038/s41598-017-18259-0

10.3389/fnut.2018.00044

10.1016/0016-5085(89)91614-4

10.1136/gutjnl-2011-301805

10.1038/nature12506

10.1038/nature12331

10.1016/j.lfs.2005.10.028

10.1530/JOE-18-0241

10.1042/BJ20050927

10.3945/jn.115.211193

10.1111/cmi.12648

Arun, 2019, Short chain fatty acids enriched fermentation metabolites of soluble dietary fibre from Musa paradisiaca drives HT29 colon cancer cells to apoptosis, PLoS ONE, 14, e0216604, 10.1371/journal.pone.0216604

Barnard, 1993, Butyrate rapidly induces growth inhibition and differentiation in HT-29 cells, Cell Growth Differ, 4, 495

10.1038/s41575-019-0157-3

10.1016/j.cmet.2011.02.018

10.1042/bj2310713

10.1016/j.cellimm.2012.05.011

10.1038/mi.2017.118

10.1002/ijc.25599

10.1038/nrmicro2473

10.1210/en.2018-00261

10.1038/s41598-018-28048-y

10.1038/nrendo.2015.128

10.1038/ijo.2014.153

10.1093/nar/gkw189

10.1002/cphy.c170014

10.1017/S0029665114001657

10.1093/jn/133.11.3509

10.1073/pnas.1424886112

10.1038/srep12880

10.1371/journal.pone.0156334

10.1038/s41574-019-0168-8

10.1074/jbc.M301403200

10.1016/j.chom.2015.03.005

Cuche, 2000, Ileal short-chain fatty acids inhibit gastric motility by a humoral pathway, Am J Physiol: Gastrointest Liver Physiol, 279, G925

10.1016/j.molcel.2012.08.033

10.1016/j.chom.2018.01.004

10.1016/j.autneu.2006.10.005

10.1152/ajprenal.00252.2013

10.1016/j.cbpa.2019.08.004

10.1111/j.1365-2036.2007.03562.x

10.1016/j.cell.2016.10.034

10.1016/0092-8674(78)90305-7

10.1016/j.clnu.2009.05.011

10.1126/science.aao5774

10.1210/en.2013-1142

Augeron, 1984, Emergence of permanently differentiated cell clones in a human colonic cancer cell line in culture after treatment with sodium butyrate, Cancer Res, 44, 3961

10.4049/jimmunol.1700105

10.1073/pnas.1005963107

Vincent, 2018, Abnormal absorptive colonic motor activity in germ-free mice is rectified by butyrate, an effect possibly mediated by mucosal serotonin, Am J Physiol: Gastrointest Liver Physiol, 315, G896

10.1016/j.chom.2019.10.019

10.1152/physrev.1990.70.2.567

10.1073/pnas.1322269111

10.1016/j.coi.2011.11.002

10.1016/S1091-255X(00)80093-1

10.1111/j.1462-2920.2009.01931.x

10.1016/0092-8674(78)90306-9

10.1152/ajpendo.90637.2008

10.1002/jcp.21556

Subramanya, 2007, Differential regulation of cholera toxin-inhibited Na-H exchange isoforms by butyrate in rat ileum, Am J Physiol: Gastrointest Liver Physiol, 293, G857

10.1152/ajpregu.00442.2002

10.1038/ismej.2014.14

10.1016/S0021-9258(17)35855-6

10.1016/j.mib.2017.07.003

10.1038/mi.2016.114

10.1158/0008-5472.CAN-08-4466

10.1038/nature13568

10.1128/MCB.00858-12

10.1007/s10735-007-9145-y

10.1111/j.1574-6968.2002.tb11467.x

10.1074/jbc.M211609200

10.1038/nature08821

10.1128/IAI.70.2.953-963.2002

10.1136/gut.28.10.1221

10.1172/JCI1042

10.1016/j.biopha.2010.09.017

10.1038/nature08530

10.1016/S1357-2725(97)00133-7

10.1007/s00441-015-2165-0

10.1084/jem.193.9.1027

10.1038/ncomms7734

10.1074/jbc.M116.734517

10.1096/fj.14-259598

10.3389/fimmu.2018.02838

10.1097/MCG.0b013e3181dd8b76

10.1136/gut.22.9.763

10.2337/db13-0991

10.1016/j.immuni.2011.03.021

10.1038/srep12693

Conn, 1983, Characterization of alpha-keto acid transport across blood–brain barrier in rats, Am J Physiol, 245, E253

10.1016/j.phrs.2013.01.003

10.1038/nature12721

Amin, 2007, Involvement of Sp1 and Sp3 in differential regulation of human NHE3 promoter activity by sodium butyrate and IFN-gamma/TNF-alpha, Am J Physiol: Gastrointest Liver Physiol, 293, G374

10.1016/j.immuni.2018.12.018

10.1038/srep24838

10.1093/jn/121.11.1787

10.1073/pnas.0602888103

10.1080/00365521.1997.11720708

10.1038/nature12480

10.1186/s40168-018-0466-8

10.1111/j.1574-6968.2009.01514.x

10.3389/fimmu.2017.01429

10.1096/fj.201700252RR

10.1007/s10620-012-2259-4

10.1126/science.aad2571

10.2337/db06-1491

10.1016/j.neulet.2016.02.009

Cherbut, 1998, Short-chain fatty acids modify colonic motility through nerves and polypeptide YY release in the rat, Am J Physiol, 275, G1415

10.1006/cyto.1996.0132

10.2337/db11-1019

10.1080/19490976.2016.1182295

10.1038/nature12726

10.1371/journal.pone.0129501

10.1159/000335672

10.1038/nrc2069

10.1101/gr.5540007

10.1097/00008469-199608000-00002

10.1038/s41598-018-37019-2

Kim, 2019, Propionate of a microbiota metabolite induces cell apoptosis and cell cycle arrest in lung cancer, Mol Med Rep, 20, 1569

10.1007/s11626-018-0239-5

10.1016/S0021-9258(19)68806-X

10.1016/j.molmet.2016.10.011

10.1126/science.1241165

10.1017/S000711451400021X

10.1038/s41586-018-0620-2

10.1053/j.gastro.2010.01.053

10.1073/pnas.1605997113

10.1128/mBio.01453-15

10.1016/j.tvjl.2006.05.015

10.1038/s41588-019-0350-x

10.2337/db18-0883

10.1074/jbc.M113.455337

10.1126/science.1198469

10.1073/pnas.0808567105

10.1038/s41467-019-13603-6

10.1016/j.chom.2016.07.001

10.1038/nm.4068

10.1079/BJN20041150

10.1038/ncomms4611

10.2220/biomedres.30.149

Gaudier, 2004, Butyrate specifically modulates MUC gene expression in intestinal epithelial goblet cells deprived of glucose, Am J Physiol: Gastrointest Liver Physiol, 287, G1168

10.1038/bjc.2012.409