SARS-CoV-2 disease severity and diabetes: why the connection and what is to be done?

Immunity & Ageing - Tập 17 Số 1 - 2020
Caio Henrique Mazucanti1, Josephine M. Egan1
1National Institute on Aging, Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD, 21224, USA

Tóm tắt

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel virus responsible for the current coronavirus disease 2019 (COVID-19) pandemic, has infected over 3.5 million people all over the world since the first case was reported from Wuhan, China 5 months ago. As more epidemiological data regarding COVID-19 patients is acquired, factors that increase the severity of the infection are being identified and reported. One of the most consistent co-morbidities associated with worse outcome in COVID-19 patients is diabetes, along with age and cardiovascular disease. Studies on the association of diabetes with other acute respiratory infections, namely SARS, MERS, and Influenza, outline what seems to be an underlying factor in diabetic patients that makes them more susceptible to complications. In this review we summarize what we think may be the factors driving this pattern between diabetes, aging and poor outcomes in respiratory infections. We also review therapeutic considerations and strategies for treatment of COVID-19 in diabetic patients, and how the additional challenge of this co-morbidity requires attention to glucose homeostasis so as to achieve the best outcomes possible for patients.

Từ khóa


Tài liệu tham khảo

COVID-19 Coronavirus Pandemic. Available from: https://www.worldometers.info/coronavirus/. [cited 2020 Apr 20].

World Health Organization. Coronavirus disease (COVID-2019) situation reports. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/. [cited 2020 Apr 20].

Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382(8):727–33. https://doi.org/10.1056/NEJMoa2001017.

The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020;5(4):536–44. Available from: http://www.nature.com/articles/s41564-020-0695-z.

Hellewell J, Abbott S, Gimma A, Bosse NI, Jarvis CI, Russell TW, et al. Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts. Lancet Glob Heal. 2020;8(4):e488–96 Available from: https://linkinghub.elsevier.com/retrieve/pii/S2214109X20300747.

World Health Organization. Middle East respiratory syndrome coronavirus (MERS-CoV). Available from: https://www.who.int/emergencies/mers-cov/en/. [cited 2020 Apr 20].

World Health Organization. Severe Acute Respiratory Syndrome (SARS). Available from: https://www.who.int/csr/sars/en/. [cited 2020 Apr 20].

Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0140673620301835.

Guan W, Ni Z, Hu Y, Liang W, Ou C, He J, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020;28:NEJMoa2002032. https://doi.org/10.1056/NEJMoa2002032.

Zhang J, Dong X, Cao Y, Yuan Y, Yang Y, Yan Y, et al. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy 2020 all.14238. doi: https://doi.org/10.1111/all.14238.

Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China. JAMA. 2020;323(11):1061 Available from: https://jamanetwork.com/journals/jama/fullarticle/2761044.

Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020; Available from: https://linkinghub.elsevier.com/retrieve/pii/S2213260020300795. Accessed 28 Apr.

Yang J, Zheng Y, Gou X, Pu K, Chen Z, Guo Q, et al. Prevalence of comorbidities and its effects in coronavirus disease 2019 patients: a systematic review and meta-analysis. Int J Infect Dis. 2020;94:91–5 Available from: https://linkinghub.elsevier.com/retrieve/pii/S1201971220301363.

Wu Z, JM MG. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China. JAMA. 2020;323(13):1239 Available from: https://jamanetwork.com/journals/jama/fullarticle/2762130.

Abu-Ashour W, Twells LK, Valcour JE, Gamble J-M. Diabetes and the occurrence of infection in primary care: a matched cohort study. BMC Infect Dis. 2018;18(1):67. https://doi.org/10.1186/s12879-018-2975-2.

Bartelink M, Hoek L, Freriks J, Rutten GEH. Infections in patients with type 2 diabetes in general practice. Diabetes Res Clin Pract. 1998;40(1):15–9 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0168822798000230.

Golden SH, Peart-Vigilance C, Kao WH, Brancati FL. Perioperative glycemic control and the risk of infectious complications in a cohort of adults with diabetes. Diabetes Care. 1999;22(9):1408–14. https://doi.org/10.2337/diacare.22.9.1408.

Critchley JA, Carey IM, Harris T, DeWilde S, Hosking FJ, Cook DG. Glycemic control and risk of infections among people with type 1 or type 2 diabetes in a large primary care cohort study. Diabetes Care. 2018;41(10):2127–35. https://doi.org/10.2337/dc18-0287.

Delamaire M, Maugendre D, Moreno M, Le Goff M-C, Allannic H, Genetet B. Impaired leucocyte functions in diabetic patients. Diabet Med. 1997;14(1):29–34 Available from: http://doi.wiley.com/10.1002/%28SICI%291096-9136%28199701%2914%3A1%3C29%3A%3AAID-DIA300%3E3.0.CO%3B2-V.

Zykova SN, Jenssen TG, Berdal M, Olsen R, Myklebust R, Seljelid R. Altered cytokine and nitric oxide secretion in vitro by macrophages from diabetic type II-like db/db mice. Diabetes. 2000;49(9):1451–8. https://doi.org/10.2337/diabetes.49.9.1451.

Smith AG, Sheridan PA, Tseng RJ, Sheridan JF, Beck MA. Selective impairment in dendritic cell function and altered antigen-specific CD8 + T-cell responses in diet-induced obese mice infected with influenza virus. Immunology. 2009;126(2):268–79. https://doi.org/10.1111/j.1365-2567.2008.02895.x.

Summers KL, Marleau AM, Mahon JL, McManus R, Hramiak I, Singh B. Reduced IFN-α secretion by blood dendritic cells in human diabetes. Clin Immunol. 2006;121(1):81–9 Available from: https://linkinghub.elsevier.com/retrieve/pii/S1521661606007650.

Meshkani R, Vakili S. Tissue resident macrophages: key players in the pathogenesis of type 2 diabetes and its complications. Clin Chim Acta. 2016;462:77–89 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0009898116303552.

Hodgson K, Morris J, Bridson T, Govan B, Rush C, Ketheesan N. Immunological mechanisms contributing to the double burden of diabetes and intracellular bacterial infections. Immunology. 2015;144(2):171–85. https://doi.org/10.1111/imm.12394.

Kuka M, De Giovanni M, Iannacone M. The role of type I interferons in CD4+ T cell differentiation. Immunol Lett. 2019;215:19–23 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0165247819300148.

De Giovanni M, Cutillo V, Giladi A, Sala E, Maganuco CG, Medaglia C, et al. Spatiotemporal regulation of type I interferon expression determines the antiviral polarization of CD4+ T cells. Nat Immunol. 2020;21(3):321–30 Available from: http://www.nature.com/articles/s41590-020-0596-6.

Kuri T, Zhang X, Habjan M, Martínez-Sobrido L, García-Sastre A, Yuan Z, et al. Interferon priming enables cells to partially overturn the SARS coronavirus-induced block in innate immune activation. J Gen Virol. 2009;90(11):2686–94. https://doi.org/10.1099/vir.0.013599-0.

Lokugamage KG, Hage A, Schindewolf C, Rajsbaum R, Menachery VD. SARS-CoV-2 is sensitive to type I interferon pretreatment. bioRxiv. 2020;2020.03.07.982264. Available from: http://biorxiv.org/content/early/2020/04/09/2020.03.07.982264.abstract. Accessed 11 May.

Falzarano D, de Wit E, Martellaro C, Callison J, Munster VJ, Feldmann H. Inhibition of novel β coronavirus replication by a combination of interferon-α2b and ribavirin. Sci Rep. 2013;3(1):1686 Available from: http://www.nature.com/articles/srep01686.

Meng Z, Wang T, Li C, Chen X, Li L, Qin X, et al. An experimental trial of recombinant human interferon alpha nasal drops to prevent coronavirus disease 2019 in medical staff in an epidemic area. medRxiv. 2020;2020.04.11.20061473. Available from: http://medrxiv.org/content/early/2020/04/17/2020.04.11.20061473.abstract. Accessed 11 May.

Centers for Disease Control and Prevention. National Diabetes Statistics Report. Available from: https://www.cdc.gov/diabetes/data/statistics/statistics-report.html. [cited 2020 May 6].

Weigle WO. Effects of aging on the immune system. Hosp Pract. 1989;24(12):112–9. https://doi.org/10.1080/21548331.1989.11703827.

Thoman ML, Weigle WO. Lymphokines and aging: interleukin-2 production and activity in aged animals. J Immunol. 1981;127(5):2102–6 Available from: http://www.ncbi.nlm.nih.gov/pubmed/6457862.

Li G, Ju J, Weyand CM, Goronzy JJ. Age-associated failure to adjust type I IFN receptor signaling thresholds after T cell activation. J Immunol. 2015;195(3):865–74. https://doi.org/10.4049/jimmunol.1402389.

Centers for Disease Control and Prevention. Flu and People with Diabetes. Available from: https://www.cdc.gov/flu/highrisk/diabetes.htm. [cited 2020 Apr 22].

Allard R, Leclerc P, Tremblay C, Tannenbaum T-N. Diabetes and the severity of pandemic influenza a (H1N1) infection. Diabetes Care. 2010;33(7):1491–3. https://doi.org/10.2337/dc09-2215.

Yang JK, Feng Y, Yuan MY, Yuan SY, Fu HJ, Wu BY, et al. Plasma glucose levels and diabetes are independent predictors for mortality and morbidity in patients with SARS. Diabet Med. 2006;23(6):623–8. https://doi.org/10.1111/j.1464-5491.2006.01861.x.

Kulcsar KA, Coleman CM, Beck SE, Frieman MB. Comorbid diabetes results in immune dysregulation and enhanced disease severity following MERS-CoV infection. JCI Insight. 2019;4(20) Available from: https://insight.jci.org/articles/view/131774. Accessed 1 May.

Adler EM. IL-2 Antagonizes Th17 Differentiation. Sci STKE. 2007;2007(379):tw103. https://doi.org/10.1126/stke.3792007tw103.

Muniyappa R, Gubbi S. COVID-19 pandemic, coronaviruses, and diabetes mellitus. Am J Physiol Metab. 2020;318(5):E736–41. https://doi.org/10.1152/ajpendo.00124.2020.

Chance WW, Rhee C, Yilmaz C, Dane DM, Pruneda ML, Raskin P, et al. Diminished alveolar microvascular reserves in type 2 diabetes reflect Systemic Microangiopathy. Diabetes Care. 2008;31(8):1596–601. https://doi.org/10.2337/dc07-2323.

Foster DJ, Ravikumar P, Bellotto DJ, Unger RH, Hsia CCW. Fatty diabetic lung: altered alveolar structure and surfactant protein expression. Am J Physiol Cell Mol Physiol. 2010;298(3):L392–403. https://doi.org/10.1152/ajplung.00041.2009.

Ghesquière B, Wong BW, Kuchnio A, Carmeliet P. Metabolism of stromal and immune cells in health and disease. Nature. 2014;511(7508):167–76 Available from: http://www.nature.com/articles/nature13312.

Bottini P, Scionti L, Santeusanio F, Casucci G, Tantucci C. Impairment of the respiratory system in diabetic autonomic neuropathy. Diabetes Nutr Metab. 2000;13(3):165–72 Available from: http://europepmc.org/abstract/MED/10963393.

Antonelli Incalzi R, Fuso L, Giordano A, Pitocco D, Maiolo C, Calcagni ML, et al. Neuroadrenergic denervation of the lung in type I diabetes mellitus complicated by autonomic neuropathy. Chest. 2002;121(2):443–51 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0012369216354484.

McIntosh K, Dees JH, Becker WB, Kapikian AZ, Chanock RM. Recovery in tracheal organ cultures of novel viruses from patients with respiratory disease. Proc Natl Acad Sci. 1967;57(4):933–40. https://doi.org/10.1073/pnas.57.4.933.

Drosten C, Günther S, Preiser W, van der Werf S, Brodt H-R, Becker S, et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med. 2003;348(20):1967–76. https://doi.org/10.1056/NEJMoa030747.

Fouchier RAM, Hartwig NG, Bestebroer TM, Niemeyer B, de Jong JC, Simon JH, et al. A previously undescribed coronavirus associated with respiratory disease in humans. Proc Natl Acad Sci. 2004;101(16):6212–6. https://doi.org/10.1073/pnas.0400762101.

Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus ADME, Fouchier RAM. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med. 2012;367(19):1814–20. https://doi.org/10.1056/NEJMoa1211721.

Yeager CL, Ashmun RA, Williams RK, Cardellichio CB, Shapiro LH, Look AT, et al. Human aminopeptidase N is a receptor for human coronavirus 229E. Nature. 1992;357(6377):420–2 Available from: http://www.nature.com/articles/357420a0.

Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426(6965):450–4 Available from: http://www.nature.com/articles/nature02145.

Hofmann H, Pyrc K, van der Hoek L, Geier M, Berkhout B, Pohlmann S. Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry. Proc Natl Acad Sci. 2005;102(22):7988–93. https://doi.org/10.1073/pnas.0409465102.

Raj VS, Mou H, Smits SL, Dekkers DHW, Müller MA, Dijkman R, et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature [Internet]. 2013;495(7440):251–4 Available from: http://www.nature.com/articles/nature12005.

Rao S, Lau A, So H-C. Exploring diseases/traits and blood proteins causally related to expression of ACE2, the putative receptor of 2019-nCov: A Mendelian Randomization analysis. medRxiv 2020 2020.03.04.20031237. Available from: http://medrxiv.org/content/early/2020/03/08/2020.03.04.20031237.abstract. Accessed 1 May.

Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–3 Available from: http://www.nature.com/articles/s41586-020-2012-7.

Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh C-L, Abiona O, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367(6483):1260–3. https://doi.org/10.1126/science.abb2507.

Roca-Ho H, Riera M, Palau V, Pascual J, Soler M. Characterization of ACE and ACE2 Expression within Different Organs of the NOD Mouse. Int J Mol Sci. 2017;18(3):563 Available from: http://www.mdpi.com/1422-0067/18/3/563.

Wysocki J, Ye M, Soler MJ, Gurley SB, Xiao HD, Bernstein KE, et al. ACE and ACE2 activity in diabetic mice. Diabetes. 2006;55(7):2132–9. https://doi.org/10.2337/db06-0033.

Chen X, Hu W, Ling J, Mo P, Zhang Y, Jiang Q, et al. Hypertension and Diabetes Delay the Viral Clearance in COVID-19 Patients. medRxiv 2020;2020.03.22.20040774. Available from: http://medrxiv.org/content/early/2020/03/24/2020.03.22.20040774.abstract. Accessed 1 May.

Carey RM, Wang Z-Q, Siragy HM. Role of the angiotensin type 2 receptor in the regulation of blood pressure and renal function. Hypertension. 2000;35(1):155–63. https://doi.org/10.1161/01.HYP.35.1.155.

Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus–induced lung injury. Nat Med. 2005;11(8):875–9 Available from: http://www.nature.com/articles/nm1267.

Vennemann MM, Hummel T, Berger K. The association between smoking and smell and taste impairment in the general population. J Neurol. 2008;255(8):1121–6. https://doi.org/10.1007/s00415-008-0807-9.

Bramerson A, Johansson L, Ek L, Nordin S, Bende M. Prevalence of olfactory dysfunction: the Sk??Vde population-based study. Laryngoscope. 2004;114(4):733–7. https://doi.org/10.1097/00005537-200404000-00026.

Olender T, Keydar I, Pinto JM, Tatarskyy P, Alkelai A, Chien M-S, et al. The human olfactory transcriptome. BMC Genomics. 2016;17(1):619. https://doi.org/10.1186/s12864-016-2960-3.

Brann DH, Tsukahara T, Weinreb C, Lipovsek M, Van den Berge K, Gong B, et al. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. bioRxiv. 2020;2020.03.25.009084. Available from: http://biorxiv.org/content/early/2020/04/09/2020.03.25.009084.abstract. Accessed 2 May.

Calvo SS-C, Egan JM. The endocrinology of taste receptors. Nat Rev Endocrinol. 2015;11(4):213–27 Available from: http://www.nature.com/articles/nrendo.2015.7.

Shigemura N, Takai S, Hirose F, Yoshida R, Sanematsu K, Ninomiya Y. Expression of Renin-Angiotensin System Components in the Taste Organ of Mice. Nutrients. 2019;11(9):2251 Available from: https://www.mdpi.com/2072-6643/11/9/2251.

Cavallin MA, McCluskey LP. Lipopolysaccharide-induced up-regulation of activated macrophages in the degenerating taste system. J Neurosci Res. 2005;80(1):75–84. https://doi.org/10.1002/jnr.20438.

Feng P, Yee KK, Rawson NE, Feldman LM, Feldman RS, Breslin PAS. Immune cells of the human peripheral taste system: dominant dendritic cells and CD4 T cells. Brain Behav Immun. 2009;23(6):760–6 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0889159109000567.

He Y, Hara H, Núñez G. Mechanism and regulation of NLRP3 Inflammasome activation. Trends Biochem Sci. 2016;41(12):1012–21 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0968000416301487.

Zhao C, Zhao W. NLRP3 Inflammasome—A Key Player in Antiviral Responses. Front Immunol. 2020;11 Available from: https://www.frontiersin.org/article/10.3389/fimmu.2020.00211/full. Accessed 2 May.

Kellokumpu-Lehtinen P, Nordman E, Toivanen A. Combined interferon and vinblastine treatment of advanced melanoma: evaluation of the treatment results and the effects of the treatment on immunological functions. Cancer Immunol Immunother. 1989;28(3). https://doi.org/10.1007/BF00204991.

Wang H, Zhou M, Brand J, Huang L. Inflammation activates the interferon signaling pathways in taste bud cells. J Neurosci. 2007;27(40):10703–13. https://doi.org/10.1523/JNEUROSCI.3102-07.2007.

Bode B, Garrett V, Messler J, McFarland R, Crowe J, Booth R, et al. Glycemic characteristics and clinical outcomes of COVID-19 patients hospitalized in the United States. J Diabetes Sci Technol. 2020. Epub ahead of print.

Zhu L, She Z-G, Cheng X, Qin J-J, Zhang X-J, Cai J, et al. Association of Blood Glucose Control and Outcomes in Patients with COVID-19 and Pre-existing Type 2 Diabetes. Cell Metab. 2020; Available from: https://linkinghub.elsevier.com/retrieve/pii/S1550413120302382. Accessed 11 May.

Hemilä H. Vitamin C and Infections. Nutrients. 2017;9(4):339 Available from: http://www.mdpi.com/2072-6643/9/4/339.

Lamers MM, Beumer J, van der Vaart J, Knoops K, Puschhof J, Breugem TI, et al. SARS-CoV-2 Productively Infects Human Gut Enterocytes. bioRxiv 2020 2020.04.25.060350. Available from: http://biorxiv.org/content/early/2020/04/25/2020.04.25.060350.abstract. Accessed 4 May.

Stanifer ML, Kee C, Cortese M, Triana S, Mukenhirn M, Kraeusslich H-G, et al. Critical role of type III interferon in controlling SARS-CoV-2 infection, replication and spread in primary human intestinal epithelial cells. bioRxiv 2020;2020.04.24.059667. Available from: http://biorxiv.org/content/early/2020/04/24/2020.04.24.059667.abstract. Accessed 4 May.

Wang J, Hajizadeh N, Moore EE, McIntyre RC, Moore PK, Veress LA, et al. Tissue Plasminogen Activator (tPA) Treatment for COVID-19 Associated Acute Respiratory Distress Syndrome (ARDS): A Case Series. J Thromb Haemost. 2020. https://doi.org/10.1111/jth.14828.

M. CC, Rami K. Will Complement Inhibition be the New Target in Treating COVID-19 Related Systemic Thrombosis? Circulation. 2020 May 2;0(0). doi: 10.1161/CIRCULATIONAHA.120.047419.

Quatraro A. Hydroxychloroquine in Decompensated, Treatment-Refractory Noninsulin-Dependent Diabetes Mellitus. Ann Intern Med. 1990;112(9):678. do: https://doi.org/10.7326/0003-4819-112-9-678.

Halaby M-J, Kastein BK, Yang D-Q. Chloroquine stimulates glucose uptake and glycogen synthase in muscle cells through activation of Akt. Biochem Biophys Res Commun. 2013;435(4):708–13 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0006291X13008309.

Holland WL, Miller RA, Wang ZV, Sun K, Barth BM, Bui HH, et al. Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin. Nat Med. 2011;17(1):55–63 Available from: http://www.nature.com/articles/nm.2277.

Liu J, Cao R, Xu M, Wang X, Zhang H, Hu H, et al. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov. 2020;6(1):16 Available from: http://www.nature.com/articles/s41421-020-0156-0.

Borba MGS, Val FFA, Sampaio VS, Alexandre MAA, Melo GC, Brito M, et al. Effect of High vs Low Doses of Chloroquine Diphosphate as Adjunctive Therapy for Patients Hospitalized With Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection. JAMA Netw Open. 2020;3(4):e208857 Available from: https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2765499.

Vaduganathan M, Vardeny O, Michel T, McMurray JJV, Pfeffer MA, Solomon SD. Renin–angiotensin–aldosterone system inhibitors in patients with Covid-19. N Engl J Med. 2020;382(17):1653–9. https://doi.org/10.1056/NEJMsr2005760.

Kim W, Egan JM. The role of Incretins in glucose homeostasis and diabetes treatment. Pharmacol Rev. 2008;60(4):470–512. https://doi.org/10.1124/pr.108.000604.

Chia CW, Egan JM. Incretins in obesity and diabetes. Ann N Y Acad Sci. 2020;1461(1):104–26. https://doi.org/10.1111/nyas.14211.

Boonacker E. The multifunctional or moonlighting protein CD26/DPPIV. Eur J Cell Biol. 2003;82(2):53–73 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0171933504702770.

Price JD, Linder G, Li WP, Zimmermann B, Rother KI, Malek R, et al. Effects of short-term sitagliptin treatment on immune parameters in healthy individuals, a randomized placebo-controlled study. Clin Exp Immunol. 2013;174(1):120–8. https://doi.org/10.1111/cei.12144.

van Poppel PCM, Gresnigt MS, Smits P, Netea MG, Tack CJ. The dipeptidyl peptidase-4 inhibitor vildagliptin does not affect ex vivo cytokine response and lymphocyte function in patients with type 2 diabetes mellitus. Diabetes Res Clin Pract. 2014;103(3):395–401 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0168822713004737.

Shyamsundar M, McKeown STW, O’Kane CM, Craig TR, Brown V, Thickett DR, et al. Simvastatin decreases lipopolysaccharide-induced pulmonary inflammation in healthy volunteers. Am J Respir Crit Care Med. 2009;179(12):1107–14. https://doi.org/10.1164/rccm.200810-1584OC.

Fedson DS, Opal SM, Rordam OM. Hiding in Plain Sight: an Approach to Treating Patients with Severe COVID-19 Infection. MBio. 2020;11(2). https://doi.org/10.1128/mBio.00398-20.

National Institute of Allergy and Infectious. COVID-19 Treatment Guidelines. Available from: https://covid19treatmentguidelines.nih.gov/introduction/. [cited 2020 Apr 5].