SARS-COV-2 như một miếng bọt biển microRNA tiềm năng ở bệnh nhân COVID-19

BMC Medical Genomics - Tập 15 Số S2 - 2022
Chang Li1, Rebecca Wang2, Aurora Wu3, Tina L. Yuan4, Kevin Song5, Yongsheng Bai6,7, Xiaoming Liu1
1USF Genomics and College of Public Health, University of South Florida, Tampa, USA
2Pioneer High School, Ann Arbor, USA
3Emma Willard School, Troy, USA
4The Roeper School, Birmingham, USA
5Credit Suisse, New York, USA
6Department of Biology, Eastern Michigan University, Ypsilanti, USA
7Next-Gen Intelligent Science Training, Ann Arbor, USA

Tóm tắt

Tóm tắt Đặt vấn đề MicroRNA (miRNA) là một lớp RNA nhỏ không mã hóa có thể giảm biểu hiện của các mục tiêu của chúng bằng cách liên kết chọn lọc với vùng không dịch mã 3′ (3′UTR) của hầu hết các RNA thông tin (mRNA) trong bộ gen người. MiRNA có thể tương tác với các phân tử khác như virus và đóng vai trò như một chất trung gian cho sự nhiễm virus. Trong nghiên cứu này, chúng tôi đã xem xét liệu, và đến mức độ nào, virus SARS-CoV-2 có thể hoạt động như một “miếng bọt biển” đối với miRNA của con người.

Từ khóa

#miRNA #SARS-CoV-2 #bọt biển miRNA #COVID-19 #nghiên cứu sinh học phân tử

Tài liệu tham khảo

V’kovski P, Kratzel A, Steiner S, Stalder H, Thiel V. Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol. 2021;19:155–70.

Liu Y, Sun W, Li J, Chen L, Wang Y, Zhang L, Yu L. Clinical features and progression of acute respiratory distress syndrome in coronavirus disease 2019. medRxiv 2020.

Jin Y, Yang H, Ji W, Wu W, Chen S, Zhang W, Duan G. Virology, epidemiology, pathogenesis, and control of COVID-19. Viruses. 2020;12:372.

Nile SH, Nile A, Qiu J, Li L, Jia X, Kai G. COVID-19: pathogenesis, cytokine storm and therapeutic potential of interferons. Cytokine Growth Factor Rev. 2020;53:66–70.

Bartel SP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97. https://doi.org/10.1016/s0092-8674(04)00045-5.

Skalsky RL, Cullen BR. Viruses, microRNAs, and host interactions. Annu Rev Microbiol. 2010;64:123–41. https://doi.org/10.1146/annurev.micro.112408.134243.

Trobaugh DW, Klimstra WB. MicroRNA regulation of RNA virus replication and pathogenesis. Trends Mol Med. 2017;23:80–93.

Triboulet R, Mari B, Lin Y-L, Chable-Bessia C, Bennasser Y, Lebrigand K, Cardinaud B, Maurin T, Barbry P, Baillat V. Suppression of microRNA-silencing pathway by HIV-1 during virus replication. Science. 2007;315:1579–82.

Girardi E, López P, Pfeffer S. On the importance of host microRNAs during viral infection. Front Genet. 2018;9:439.

Peng S, Wang J, Wei S, Li C, Zhou K, Hu J, Ye X, Yan J, Liu W, Gao GF. Endogenous cellular microRNAs mediate antiviral defense against influenza A virus. Mol Ther Nucleic Acids. 2018;10:361–75.

Shimakami T, Yamane D, Jangra RK, Kempf BJ, Spaniel C, Barton DJ, Lemon SM. Stabilization of hepatitis C virus RNA by an Ago2–miR-122 complex. Proc Natl Acad Sci. 2012;109:941–6.

Ivashchenko A, Rakhmetullina A, Aisina D. How miRNAs can protect humans from coronaviruses COVID-19, SARS-CoV, and MERS-CoV. 2020.

Bartoszewski R, Dabrowski M, Jakiela B, Matalon S, Harrod KS, Sanak M, Collawn JF. SARS-CoV-2 may regulate cellular responses through depletion of specific host miRNAs. Am J Physiol Lung Cell Mol Physiol. 2020;319:L444–55.

Hum C, Loiselle J, Ahmed N, Shaw TA, Toudic C, Pezacki JP. MicroRNA mimics or inhibitors as antiviral therapeutic approaches against COVID-19. Drugs. 2021;81:517–31.

Qiao Y, Zhao X, Liu J, Yang W. Epstein–Barr virus circRNAome as host miRNA sponge regulates virus infection, cell cycle, and oncogenesis. Bioengineered. 2019;10:593–603.

Wong N, Wang X. miRDB: an online resource for microRNA target prediction and functional annotations. Nucleic Acids Res. 2015;43:D146–52.

Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. Elife. 2015;4:1–38. https://doi.org/10.7554/eLife.05005.

Friedman RC, Farh KKH, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19:92–105. https://doi.org/10.1101/gr.082701.108.

Mick E, Kamm J, Pisco AO, Ratnasiri K, Babik JM, Calfee CS, Castaneda G, DeRisi JL, Detweiler AM, Hao S. Upper airway gene expression differentiates COVID-19 from other acute respiratory illnesses and reveals suppression of innate immune responses by SARS-CoV-2. medRxiv 2020.

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:1–21.

Durinck S, Spellman PT, Birney E, Huber W. Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat Protoc. 2009;4:1184.

Durinck S, Moreau Y, Kasprzyk A, Davis S, De Moor B, Brazma A, Huber W. BioMart and Bioconductor: a powerful link between biological databases and microarray data analysis. Bioinformatics. 2005;21:3439–40.

Huang H-Y, Lin Y-C-D, Li J, Huang K-Y, Shrestha S, Hong H-C, Tang Y, Chen Y-G, Jin C-N, Yu Y. miRTarBase 2020: updates to the experimentally validated microRNA–target interaction database. Nucleic Acids Res. 2020;48:D148–54.

Hsu S-D, Lin F-M, Wu W-Y, Liang C, Huang W-C, Chan W-L, Tsai W-T, Chen G-Z, Lee C-J, Chiu C-M. miRTarBase: a database curates experimentally validated microRNA–target interactions. Nucleic Acids Res. 2011;39:D163–9.

Chow JT-S, Salmena L. Prediction and Analysis of SARS-CoV-2-targeting MicroRNA in human lung epithelium. Genes. 2020;11:1002.

Kern F, Fehlmann T, Solomon J, Schwed L, Grammes N, Backes C, Van Keuren-Jensen K, Craig DW, Meese E, Keller A. miEAA 2.0: integrating multi-species microRNA enrichment analysis and workflow management systems. Nucleic Acids Res. 2020;48:W521–8.

Dweep H, Sticht C, Pandey P, Gretz N. miRWalk–database: prediction of possible miRNA binding sites by “walking” the genes of three genomes. J Biomed Inform. 2011;44:839–47.

Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2007;36:D480–4.

Vine R. Google scholar. J Med Libr Assoc. 2006;94:97.

Liao M, Liu Y, Yuan J, Wen Y, Xu G, Zhao J, Cheng L, Li J, Wang X, Wang F, et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat Med. 2020;26:842–4. https://doi.org/10.1038/s41591-020-0901-9.

Hao Y, Hao S, Andersen-Nissen E, Mauck WM 3rd, Zheng S, Butler A, Lee MJ, Wilk AJ, Darby C, Zager M, et al. Integrated analysis of multimodal single-cell data. Cell. 2021. https://doi.org/10.1016/j.cell.2021.04.048.

Hamada-Tsutsumi S, Naito Y, Sato S, Takaoka A, Kawashima K, Isogawa M, Ochiya T, Tanaka Y. The antiviral effects of human microRNA miR-302c-3p against hepatitis B virus infection. Aliment Pharmacol Ther. 2019;49:1060–70.

Gasparello J, Finotti A, Gambari R. Tackling the COVID-19 “cytokine storm” with microRNA mimics directly targeting the 3′UTR of pro-inflammatory mRNAs. Med Hypotheses. 2021;146: 110415.

Wang C, Shan L, Qu S, Xue M, Wang K, Fu F, Wang L, Wang Z, Feng L, Xu W. The coronavirus PEDV evades type III interferon response through the miR-30c-5p/SOCS1 axis. Front Microbiol. 2020;11:1180.

Carlson FR Jr, Bosukonda D, Keck PC, Carlson WD. Multiorgan damage in patients with COVID-19: is the TGF-beta/BMP pathway the missing link? JACC Basic Transl Sci. 2020;5:1145–8. https://doi.org/10.1016/j.jacbts.2020.09.003.

Chen W. A potential treatment of COVID-19 with TGF-beta blockade. Int J Biol Sci. 2020;16:1954–5. https://doi.org/10.7150/ijbs.46891.

Fajnzylber J, Regan J, Coxen K, Corry H, Wong C, Rosenthal A, Worrall D, Giguel F, Piechocka-Trocha A, Atyeo C. SARS-CoV-2 viral load is associated with increased disease severity and mortality. Nat Commun. 2020;11:1–9.

Mick E, Kamm J, Pisco AO, Ratnasiri K, Babik JM, Castañeda G, DeRisi JL, Detweiler AM, Hao SL, Kangelaris KN. Upper airway gene expression reveals suppressed immune responses to SARS-CoV-2 compared with other respiratory viruses. Nat Commun. 2020;11:1–7.

Das S, Camphausen K, Shankavaram U. In silico drug repurposing to combat covid-19 based on pharmacogenomics of patient transcriptomic data. Res Sq 2020.

Heer CD, Sanderson DJ, Voth LS, Alhammad YM, Schmidt MS, Trammell SA, Perlman S, Cohen MS, Fehr AR, Brenner C. Coronavirus infection and PARP expression dysregulate the NAD Metabolome: an actionable component of innate immunity. J Biol Chem. 2020;295:17986–96.

Wicik Z, Eyileten C, Jakubik D, Simões SN, Martins DC, Pavão R, Siller-Matula JM, Postula M. ACE2 interaction networks in COVID-19: a physiological framework for prediction of outcome in patients with cardiovascular risk factors. J Clin Med. 2020;9:3743.

Gracia-Ramos AE. Is the ACE2 overexpression a risk factor for COVID-19 infection? Arch Med Res. 2020;51:345–6.

Gagnon JD, Kageyama R, Shehata HM, Fassett MS, Mar DJ, Wigton EJ, Johansson K, Litterman AJ, Odorizzi P, Simeonov D, et al. miR-15/16 restrain memory T cell differentiation, cell cycle, and survival. Cell Rep. 2019;28:2169-2181 e2164. https://doi.org/10.1016/j.celrep.2019.07.064.