SAFEE: A Debriefing Tool to Identify Latent Conditions in Simulation-based Hospital Design Testing

Advances in Simulation - Tập 5 Số 1 - 2020
Nora Colman1, Ashley Dalpiaz2, Sarah Walter3, Misty Chambers4, Kiran Hebbar1
1Department of Pediatrics, Division of Pediatric Critical Care, Children’s Healthcare of Atlanta, 1405 Clifton Road NE, Division of Critical Care, Atlanta, GA, 30329, USA
2Department of Pediatrics, Children’s Healthcare of Atlanta, 1575 Northeast Expressway, Atlanta, GA, 30329, USA
3EYP Architecture and Engineering, 100 Peachtree St NW, Atlanta, GA, 30303, USA
4ESa (Earl Swensson Associates), 1033 Demonbreun St., Suite #800, Nashville, TN, 37203, USA

Tóm tắt

AbstractIn the process of hospital planning and design, the ability to mitigate risk is imperative and practical as design decisions made early can lead to unintended downstream effects that may lead to patient harm. Simulation has been applied as a strategy to identify system gaps and safety threats with the goal to mitigate risk and improve patient outcomes. Early in the pre-construction phase of design development for a new free-standing children’s hospital, Simulation-based Hospital Design Testing (SbHDT) was conducted in a full-scale mock-up. This allowed healthcare teams and architects to actively witness care providing an avenue to study the interaction of humans with their environment, enabling effectively identification of latent conditions that may lay dormant in proposed design features. In order to successfully identify latent conditions in the physical environment and understand the impact of those latent conditions, a specific debriefing framework focused on the built environment was developed and implemented. This article provides a rationale for an approach to debriefing that specifically focuses on the built environment and describes SAFEE, a debriefing guide for simulationists looking to conduct SbHDT.

Từ khóa


Tài liệu tham khảo

Carayon P, Schoofs Hundt A, Karsh BT, Gurses AP, Alvarado CJ, Smith M, et al. Work system design for patient safety: the SEIPS model. Qual Saf Health Care. 2006;15(Suppl 1):i50–8.

Holden RJ, Carayon P, Gurses AP, Hoonakker P, Hundt AS, Ozok AA, et al. SEIPS 2.0: a human factors framework for studying and improving the work of healthcare professionals and patients. Ergonomics. 2013;56(11):1669–86.

Dube MM, Reid J, Kaba A, Cheng A, Eppich W, Grant V, et al. PEARLS for systems integration: a modified PEARLS framework for debriefing systems-focused simulations. Simul Healthc. 2019.

Health Quality Council of Alberta. Simulation-based mock-up evaluation framework. Calgary Alberta; 2016.

Ventre KM, Barry JS, Davis D, Baiamonte VL, Wentworth AC, Pietras M, et al. Using in situ simulation to evaluate operational readiness of a children's hospital-based obstetrics unit. Simul Healthc. 2014;9(2):102–11.

Villamaria FJ, Pliego JF, Wehbe-Janek H, Coker N, Rajab MH, Sibbitt S, et al. Using simulation to orient code blue teams to a new hospital facility. Simul Healthc. 2008;3(4):209–16.

Geis GL, Pio B, Pendergrass TL, Moyer MR, Patterson MD. Simulation to assess the safety of new healthcare teams and new facilities. Simul Healthc. 2011;6(3):125–33.

Bender GJ. In situ simulation for systems testing in newly constructed perinatal facilities. Semin Perinatol. 2011;35(2):80–3.

Bender J, Shields R, Kennally K. Testing with simulation before a big move at Women & Infants Hospital. Med Health R I. 2010;93(5):145 9-50.

Francoeur C, Shea S, Ruddy M, Fontela P, Bhanji F, Razack S, et al. It takes a village to move a hospital: simulation improves intensive care team preparedness for a move to a new site. Hosp Pediatr. 2018;8(3):148–56.

Colman N, Doughty C, Arnold J, Stone K, Reid J, Dalpiaz A, et al. Simulation-based clinical systems testing for healthcare spaces: from intake through implementation. Adv Simul. 2019;4:19.

Taylor E, Hignett S, Joseph A. The environment of safe care: considering building design as one facet of safety. Int Symposium Hum Factors Ergon Healthc Care. 2014:123–7.

Colman N, Edmond MB, Dalpiaz A, Walter S, Miller DC, Hebbar K. Designing for patient safety and efficiency: simulation-based hospital design testing. HERD. 2020.

Colman N, Stone K, Arnold J, Doughty C, Reid J, Younker S, et al. Prevent safety threats in new construction through integration of simulation and FMEA. Pediatr Qual Saf. 2019;4(4):e189.

Joseph A, Quan X, Taylor E, Jelen M. Designing for patient safety: developing methods to integrate patient safety concerns in the design process. Center for Healthcare Design. 2012;Appendix V. 105-116. https://www.healthdesign.org/sites/default/files/chd416_ahrqreport_final.pdf.

Reason J. Human error: models and management. West J Med. 2000;172(6):393–6.

Joseph A, Rashid M. The architecture of safety: hospital design. Curr Opin Crit Care. 2007;13(6):714–9.

Adler MD, Mobley BL, Eppich WJ, Lappe M, Green M, Mangold K. Use of simulation to test systems and prepare staff for a new hospital transition. J Patient Saf. 2018;14(3):143–7.

Paige JT, Terry Fairbanks RJ, Gaba DM. Priorities related to improving healthcare safety through simulation. Simul Healthc. 2018;13(3S Suppl 1):S41–50.

Ulrich RS, Zimring C, Zhu X, DuBose J, Seo HB, Choi YS, et al. A review of the research literature on evidence-based healthcare design. HERD. 2008;1(3):61–125.

Patient room design checklist and evaluation tool. In the center for health design. 2015. https://www.healthdesign.org/patient-room-design-checklist-and-evaluation-tool. Accessed April 26, 2016.

Wingler D, Machry H, Bayramzadeh S, Joseph A, Allison D. Comparing the effectiveness of four different design media in communicating desired performance outcomes with clinical end users. HERD. 2019;12(2):87–99.

Harvey Murff JG, Bates D. Human factors and medical devices. In: Shonjania KG, Mc Donald KM, editors. Making Healthcare Safer: A Critical Analysis of Patient Safety Practices. Rockville: Agency for Healthcare Research and Quality; 2001. p. 459–70.

Vincent CJ, Li Y, Blandford A. Integration of human factors and ergonomics during medical device design and development: it's all about communication. Appl Ergon. 2014;45(3):413–9.

Privitera MB, Design M, Murray DL. Determining user needs in medical device design. Appl Ergon. 2009:5606–8.

Thorvald P, Linblom J, Schmitz S. Modified pluralistic walkthrough for method evaluation in manufacturing. Proced Manufact. 2015;3:5139–46.