Rye Bread Defects: Analysis of Composition and Further Influence Factors as Determinants of Dry-Baking

Foods - Tập 9 Số 12 - Trang 1900
Marie Oest1, Ute Bindrich2, Alexander Voß3, Heinz Kaiser3, Sascha Rohn4,3,1
1Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
2German Institute of Food Technologies – DIL e.V., Prof.-von-Klitzing-Str. 7, 49610, Quakenbrueck, Germany
3Institute for Food and Environmental Research (ILU) e. V., Papendorfer Weg 3, 14806 Bad Belzig, Germany
4Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, TIB 4/3-1, Gustav-Meyer-Allee 25, 13355 Berlin, Germany

Tóm tắt

For decades, the evaluation of rye milling products have been aimed at detecting raw material defects that are linked to excessive enzyme activity. Those defects were indirectly characterized by the rheological methods of the dough or the final products. However, such methods do not sufficiently reflect the baking properties of all rye flours present on the market. A further problem is the continuing climate change, which affects compound composition in rye. So far, these bread defects can only be corrected by process engineering (e.g., extended dough resting). Therefore, it is necessary to characterize the main determinants of the quality defects prior to the baking process in order to predict baking quality and not waste raw material, energy, and time. In this study, it was found that the water accessibility of starch for gelatinization and its partial inhibition by certain components play a major role in baking quality. Specifically, high amounts of insoluble nonstarch-polysaccharides (NSPSs) and a hindered denaturation of proteins seem to be an indication and reason for poor baking quality. However, traditional quantitative analysis of the ingredients and properties of the rye milling products (e.g., falling number, protein content, amylographic data) does not allow any reliable conclusions about rye flour suitability for use as bread rye. It can be concluded that more complex compositional aspects (e.g., complexation of compounds) need to be characterized for future quality control of rye.

Từ khóa


Tài liệu tham khảo

(2020, July 16). Federal Ministry of Food and Agriculture Leitsätze des Deutschen Lebensmittelbuchs für Brot und Kleingebäck. Available online: www.bmel.de.

1999, Veränderung bei den Verarbeitungseigenschaften von Roggen und Roggenmahlerzeugnissen, Getreide Mehl und Brot, 53, 154

Bauermann, 2010, Roggen im Wandel–Die neue Roggenqualität und ihr Einfluss auf das Backergebnis von Roggenmischbroten, Artisan, 8, 8

2011, Quo vadis Roggenbrot?, Mühle Mischfutter, 148, 12

Chmielewski, 1992, Impact of climate changes on crop yields of winter rye in Halle (southeastern Germany), 1901 to 1980, Clim. Res., 2, 23, 10.3354/cr002023

Al-Khayri, J.M., Jain, S.M., and Johnson, D.V. (2019). Hybrid Breeding in Rye (Secale cereale L.). Advances in Plant Breeding Strategies: Cereals: Volume 5, Springer International Publishing.

Aufhammer, W. (2003). Rohstoff Getreide, Verlag Eugen Ulmer.

Seibel, W. (2005). Warenkunde Getreide, Agrimedia.

Seibel, W. (1988). Roggen–Anbau, Verarbeitung, Markt, Behr’s Verlag.

Barthelmes, G., and Fahlenberg, E. (2010). Sortenratgeber-2010/2011 Winterroggen und Wintertriticale, State Office for Rural Develpoement, Agriculture and Land Consodilation.

Auermann, L.J. (1972). Technologie der industriellen Brotherstellung, Fachbuchverlag Leipzig.

Belitz, H.D., Grosch, W., and Schieberle, P. (2004). Food Chemistry, Springer. [3rd ed.].

Amend, 1992, Vom Mehl zum Gebäck: Mikroskopische Untersuchungen der Kleberstruktur, Getreide Mehl und Brot, 46, 259

Klingler, R.-W. (1995). Grundlagen der Getreidetechnologie, Behr’s Verlag.

Meuser, 1979, Die Rolle der hochpolymeren Kohlenhydrate bei der Getreide-und Mehlverarbeitung, Mühle Mischfuttertechnik, 393–397, 407

Schneeweiß, R., and Klose, O. (1981). Technologie der Industriellen Backwarenproduktion, VEB Fachbuchverlag. [1st ed.].

Biliaderis, 1995, Effect of arabinoxylans on bread-making quality of wheat flours, Food Chem., 53, 165, 10.1016/0308-8146(95)90783-4

Weipert, D., Tscheuschner, H.-D., and Windhab, E. (1993). Rheologie der Lebensmittelchemie, Behr’s Verlag.

Poulsen, 2002, Enzymatic solubilization of arabinoxylans from isolated rye pentosans and rye flour by different endo-xylanases and other hydrolyzing enzymes. Effect of a fungal laccase on the flour extracts oxidative gelation, J. Agric. Food Chem., 50, 6473, 10.1021/jf0255026

Romankiewicz, 2018, Prediction of rye flour baking quality based on parameters of swelling curve, Eur. Food Res. Technol., 244, 989, 10.1007/s00217-017-3014-z

Buksa, 2010, The role of pentosans and starch in baking of wholemeal rye bread, Food Res. Int., 43, 2045, 10.1016/j.foodres.2010.06.005

Kosmina, P.-N. (1977). Biochemie der Brotherstellung, VEB Fachbuchverlag.

Gellrich, 2003, Biochemical characterization and quantification of the storage protein (secalin) types in rye flour, Cereal Chem., 80, 102, 10.1094/CCHEM.2003.80.1.102

Delcour, 1991, Physicochemical and Functional Properties of Rye Nonstarch Polysaccharides. II. Impact of a Fraction Containing Water-Soluble Pentosans and Proteins on Gluten-Starch Loaf Volumes, Cereal Chem., 68, 72

Freund, W. (2010). Inhaltsstoffe und Roggenqualität. Handbuch Backwaren Technologie, Behr’s Verlag.

Beck, 2011, Rheological properties and baking performance of rye dough as affected by transglutaminase, J. Cereal Sci., 54, 29, 10.1016/j.jcs.2011.01.012

Torbica, 2019, Quality prediction of bread made from composite flours using different parameters of empirical rheology, J. Cereal Sci., 89, 102812, 10.1016/j.jcs.2019.102812

Arbeitsgemeinschaft Getreideforschung e. V. (1994). Standard-Methoden für Getreide, Mehl und Brot, Verlag Moritz Schäfer. [7th ed.].

ICC ICC-Standard No 107/1 (1995). Determination of the “Falling Number” According to Hagberg–As a Measure of the Degree of Alpha–Amylase Activity in Grain and Flour, International Association for Cereal Science and Technology.

ICC ICC-Standard No 126/1 (1992). Brabender-Amylograph, International Association for Cereal Science and Technology.

Kaiser, 2015, Entwicklung eines einfachen Backversuches auf Basis von Roggenschrot zur Bewertung der Backeigenschaften von Roggenpartien in Verbindung mit der Drehmomentsbestimmung durch den “Mixolab”, Mühle Mischfutter, 152, 174

Federal Ministry of Justice and Consumer Protection (2005). German Food and Feed Code §64, Lebensmittel- und Futtermittelgesetzbuch (LFGB), Food and Feed Code in the version published on 3 June 2013 (BGBl. I p.1426), last amended by Article 97 of the Ordinance of 19 June 2020 (BGBl. I p. 1328).

The German Institute for Standardization e.V. (2005). General Requirements for the Competence of Testing and Calibration Laboratories (ISO/IEC 17025:2005-08), Beuth Verlag.

Kiszonas, 2012, A critical assessment of the quantification of wheat grain arabinoxylans using a phloroglucinol colorimetric assay, Cereal Chem., 89, 143, 10.1094/CCHEM-02-12-0016-R

Obata, 2013, Regulation of the mitochondrial tricarboxylic acid cycle, Curr. Opin. Plant Biol., 16, 335, 10.1016/j.pbi.2013.01.004

Escher, 2003, Staling of Bread: Role of Amylose and Amylopectin and Influence of Starch-Degrading Enzymes, Cereal Chem., 80, 654, 10.1094/CCHEM.2003.80.6.654

Ratnayake, 2006, Gelatinization and solubility of corn starch during heating in excess water: New insights, J. Agric. Food Chem., 54, 3712, 10.1021/jf0529114

Fredriksson, 1998, The influence of amylose and amylopectin characteristics on gelatinization and retrogradation properties of different starches, Carbohydr. Polym., 35, 119, 10.1016/S0144-8617(97)00247-6

Buksa, 2018, Arabinoxylan-starch-protein interactions in specially modified rye dough during a simulated fermentation process, Food Chem., 253, 156, 10.1016/j.foodchem.2018.01.153

Boeriu, 2004, Horseradish Peroxidase-Catalyzed Cross-Linking of Feruloylated Arabinoxylans with Casein, J. Agric. Food Chem., 52, 6633, 10.1021/jf049622k

Sárossy, Z.S., Egsgaard, H., and Plackett, D. (2011, January 6–10). Isolation and Chemical Characterization of Hemicelluloses from Rye Bran. Proceedings of the 19th European Biomass Conference and Exhibition, Berlin, Germany.

Lexhaller, 2019, Characterization and Relative Quantitation of Wheat, Rye, and Barley Gluten Protein Types by Liquid Chromatography–Tandem Mass Spectrometry, Front. Plant Sci., 10, 1, 10.3389/fpls.2019.01530

Grossmann, 2016, Compositional Changes and Baking Performance of Rye Dough As Affected by Microbial Transglutaminase and Xylanase, J. Agric. Food Chem., 64, 5751, 10.1021/acs.jafc.6b01545

Buksa, 2016, Application of cross-linked and hydrolyzed arabinoxylans in baking of model rye bread, Food Chem., 192, 991, 10.1016/j.foodchem.2015.07.104

Dornez, E., Van Lacker, E., Gebruers, K., Delcour, J.A., and Courtin, C.M. (2008). Wheat Flour Associated Xylanases Affect the AX Population in Dough. Consumer Driven Cereal Innovation, Woodhead Publishing and AACC International Press.

Nuber, 2015, Impact of arabinoxylan addition on protein microstructure formation in wheat and rye dough, J. Food Eng., 154, 10, 10.1016/j.jfoodeng.2014.12.019

Beck, 2009, Protein cross-linking–A method for improving the quality of rye baked goods, Bak. Biscuit, 5, 78

Buksa, 2016, Application of model bread baking in the examination of arabinoxylan-Protein complexes in rye bread, Carbohydr. Polym., 148, 281, 10.1016/j.carbpol.2016.04.071

Pierpoint, 1969, o-Quinones formed in plant extracts. Their reaction with bovine serum albumin, Biochem. J., 112, 619, 10.1042/bj1120619

Piber, 2005, Identification of dehydro-ferulic acid-tyrosine in rye and wheat: Evidence for a covalent cross-link between arabinoxylans and proteins, J. Agric. Food Chem., 53, 5276, 10.1021/jf050395b

Knudsen, 2010, Rye arabinoxylans: Molecular structure, physicochemical properties and physiological effects in the gastrointestinal tract, Cereal Chem., 87, 353, 10.1094/CCHEM-87-4-0353