Rutile TiO2 Inverse Opal Anodes for Li‐Ion Batteries with Long Cycle Life, High‐Rate Capability, and High Structural Stability

Advanced Energy Materials - Tập 7 Số 12 - 2017
David McNulty1, Elaine Carroll1, Colm O’Dwyer1,2
1Department of Chemistry, University College Cork, Cork T12 YN60, Ireland
2Micro-Nano Systems Centre, Tyndall National Institute, Lee Maltings, Cork, T12 R5CP, Ireland

Tóm tắt

Rutile TiO2 inverse opals provide long cycle life and impressive structural stability when tested as anode materials for Li‐ion batteries. The capacity retention of TiO2 inverse opals (IOs) is greater than previously reported values for other rutile TiO2 nanomaterials, and the cycled crystalline phase and material interconnectivity is maintained over thousands of cycles. Consequently, this paper offers insight into the importance of optimizing the relationship between the structure and morphology on improving electrochemical performance of this abundant and low environmental impact material. TiO2 IOs show gradual capacity fading over 1000 and 5000 cycles, when cycled at specific currents of 75 and 450 mA g−1, respectively, while maintaining a high capacity and a stable overall cell voltage. TiO2 IOs achieve a reversible capacity of ≈170 and 140 mA h g−1 after the 100th and 1000th cycles, respectively, at a specific current of 75 mA g−1, corresponding to a capacity retention of ≈82.4%. The structural stability of the 3D IO phase from pristine rutile TiO2 to the conductive orthorhombic Li0.5TiO2 is remarkable and maintains its structural integrity. Image analysis conclusively shows that volumetric swelling is accommodated into the predefined pore space, and the IO periodicity remains constant and does not degrade over 5000 cycles.

Từ khóa


Tài liệu tham khảo

10.1021/nl201470j

10.1038/nmat2418

10.1021/nl403461n

10.1021/nl8036323

10.1021/acsnano.5b02528

10.1021/nl403979s

10.1002/cnma.201600093

10.1002/adma.201402000

10.1021/acsami.6b05993

10.1016/j.electacta.2015.12.131

10.1149/1.1769273

10.1002/anie.201411353

10.1016/S0167-2738(02)00186-8

10.1002/adma.200502723

10.1038/srep08498

10.1016/j.ssi.2014.11.017

10.1016/j.elecom.2008.06.024

10.1002/aenm.201200320

10.1021/acsami.5b09511

10.1038/ncomms2747

10.1038/nnano.2011.38

10.1039/c4ta00534a

10.1039/C6TA00338A

10.1016/j.jpowsour.2009.06.021

10.1039/C6RA10285A

10.1021/jp8087995

10.1016/S0167-2738(02)00350-8

10.1039/c3ta11549f

10.1016/j.nanoen.2012.02.009

10.1149/1.3422472

10.1021/cm8002589

10.1021/nn900150y

10.1016/j.jpowsour.2010.09.109

10.1039/c4ta01775g

10.1039/c3nj00024a

10.1016/j.nanoen.2016.03.019

10.1016/j.jpowsour.2009.11.040

10.1039/C4CC05480F

10.1021/acsami.5b01450

10.1039/b823142g

10.1021/jacs.5b08743

10.1103/PhysRev.154.522

Narayanan P. S., 1950, Proc. ‐ Indian Acad. Sci., Sect. A, 32, 279, 10.1007/BF03170832

10.1103/PhysRevB.77.195414

10.1002/smll.201201590

10.1063/1.2364123

10.1007/s00706-016-1678-x

10.1016/j.electacta.2007.02.050

10.1002/pssc.200405331

10.1002/jrs.1200

10.1016/j.jpowsour.2007.06.177