Ruthenium-based chemotherapeutics: are they ready for prime time?

Emmanuel S. Antonarakis1, Ashkan Emadi1
1Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Galanski M, Jakupec MA, Keppler BK (2005) Update of the preclinical situation of anticancer platinum complexes: novel design strategies and innovative analytical approaches. Curr Med Chem 12:2075–2094

Galanski M (2006) Recent developments in the field of anticancer platinum complexes. Recent Pat Anticancer Drug Discov 1:285–295

Brabec V, Kasparkova J (2005) Modifications of DNA by platinum complexes. Relation to resistance of tumors to platinum antitumor drugs. Drug Resist Updat 8:131–146

Ott I, Gust R (2007) Non platinum metal complexes as anti-cancer drugs. Arch Pharm (Weinheim) 340:117–126

Sava G, Bergamo A (2009) Ruthenium drugs for cancer chemotherapy: an ongoing challenge to treat solid tumours. In: Bonetti A et al (eds) Platinum and other heavy metal compounds in cancer chemotherapy. Humana Press, New York, pp 57–66. doi: 10.1007/978-1-60327-459-3

Kostova I (2006) Ruthenium complexes as anticancer agents. Curr Med Chem 13:1085–1107

Heffeter P, Jungwirth U, Jakupec M, Hartinger C, Galanski M et al (2008) Resistance against novel anticancer metal compounds: differences and similarities. Drug Resist Updat 11:1–16

Sava G, Zorzet S, Giraldi T, Mestroni G, Zassinovich G (1984) Antineoplastic activity and toxicity of an organometallic complex of ruthenium(II) in comparison with cis-PDD in mice bearing solid malignant neoplasms. Eur J Cancer Clin Oncol 20:841–847

Sava G, Bergamo A (2000) Ruthenium-based compounds and tumour growth control (review). Int J Oncol 17:353–365

Schluga P, Hartinger CG, Egger A, Reisner E, Galanski M et al (2006) Redox behavior of tumor-inhibiting ruthenium(III) complexes and effects of physiological reductants on their binding to GMP. Dalton Trans 14:1796–1802

Rockwell S, Dobrucki IT, Kim EY, Marrison ST, Vu VT (2009) Hypoxia and radiation therapy: past history, ongoing research, and future promise. Curr Mol Med 9:442–458

Gagliardi R, Sava G, Pacor S, Mestroni G, Alessio E (1994) Antimetastatic action and toxicity on healthy tissues of Na[trans-RuCl4(DMSO)Im] in the mouse. Clin Exp Metastasis 12:93–100

Bergamo A, Masi A, Dyson PJ, Sava G (2008) Modulation of the metastatic progression of breast cancer with an organometallic ruthenium compound. Int J Oncol 33:1281–1289

Sava G, Alessio E, Bergamo A, Mestroni G (1999) Sulfoxide ruthenium complexes. Top Biol Inorg Chem 1:143–169

Pieper T, Borsky K, Keppler BK (1999) Non-platinum antitumor compounds. Top Biol Inorg Chem 1:171–199

Sava G, Pacor S, Mestroni G, Alessio E (1992) Na[trans-RuCl4(DMSO)Im], a metal complex of ruthenium with antimetastatic properties. Clin Exp Metastasis 10:273–280

Sava G, Pacor S, Bergamo A, Cocchietto M, Mestroni G et al (1995) Effects of ruthenium complexes on experimental tumors: irrelevance of cytotoxicity for metastasis inhibition. Chem Biol Interact 95:109–126

Jakupec MA, Arion VB, Kapitza S, Reisner E, Eichinger A et al (2005) KP1019 (FFC14A) from bench to bedside: preclinical and early clinical development—an overview. Int J Clin Pharmacol Ther 43:595–596

Hartinger CG, Jakupec MA, Zorbas-Seifried S, Groessl M, Egger A et al (2008) KP1019, a new redox-active anticancer agent–preclinical development and results of a clinical phase I study in tumor patients. Chem Biodivers 5:2140–2155

Clarke MJ, Zhu F, Frasca DR (1999) Non-platinum chemotherapeutic metallopharmaceuticals. Chem Rev 99:2511–2534

Bloemink MJ, Reedijk J (1996) Cisplatin and derived anticancer drugs: mechanism and current status of DNA binding. Met Ions Biol Syst 32:641–685

Reedijk J (2003) New clues for platinum antitumor chemistry: kinetically controlled metal binding to DNA. Proc Natl Acad Sci USA 100:3611–3616

Yamada H, Koike T, Hurst JK (2001) Water exchange rates in the diruthenium μ-oxo ion cis, cis-[(bpy)2Ru(OH)2]2O4+. J Am Chem Soc 123:12775–12780

Chakravarty J, Bhattacharya S (1996) Ruthenium phenolates. Synthesis, characterization and electron-transfer properties of some salicylaldiminato and 2-(arylazo)phenolato complexes of ruthenium. Polyhedron 15:1047–1055

Baitalik S, Adhikary B (1997) Heterochelates of ruthenium(II): electrochemistry, absorption spectra, and luminescence properties. Polyhedron 16:4073–4080

Kratz F, Messori L (1993) Spectral characterization of ruthenium(III) transferrin. J Inorg Biochem 49:79–82

Pongratz M, Schluga P, Jakupec MA, Arion VB, Hartinger CG et al (2004) Transferrin binding and transferrin-mediated cellular uptake of the ruthenium coordination compound KP1019, studied by means of AAS, ESI-MS and CD spectroscopy. J Anal At Spectrom 19:46–51

Mestroni G, Alessio E, Sava G (1998) International Patent PCT C 07F 15/00, A61 K 31/28, WO 98/0043

Bergamo A, Gagliardi R, Scarcia V, Furlani A, Alessio E et al (1999) In vitro cell cycle arrest, in vivo action on solid metastasizing tumors, and host toxicity of the antimetastatic drug NAMI-A and cisplatin. J Pharmacol Exp Ther 289:559–564

Zorzet S, Bergamo A, Cocchietto M, Sorc A, Gava B et al (2000) Lack of in vitro cytotoxicity, associated to increased G2-M cell fraction and inhibition of matrigel invasion, may predict in vivo-selective antimetastasis activity of ruthenium complexes. J Pharmacol Exp Ther 295:927–933

Vacca A, Bruno M, Boccarelli A, Coluccia M, Ribatti D et al (2002) Inhibition of endothelial cell functions and of angiogenesis by the metastasis inhibitor NAMI-A. Br J Cancer 86:993–998

Pluim D, van Waardenburg RC, Beijnen JH, Schellens JH (2004) Cytotoxicity of the organic ruthenium anticancer drug NAMI-A is correlated with DNA binding in four different human tumor cell lines. Cancer Chemother Pharmacol 54:71–78

Sava G, Gagliardi R, Bergamo A, Alessio E, Mestroni G (1999) Treatment of metastases of solid mouse tumours by NAMI-A: comparison with cisplatin, cyclophosphamide and dacarbazine. Anticancer Res 19:969–972

Sava G, Capozzi I, Clerici K, Gagliardi G, Alessio E et al (1998) Pharmacological control of lung metastases of solid tumours by a novel ruthenium complex. Clin Exp Metastasis 16:371–379

Sava G, Clerici K, Capozzi I, Cocchietto M, Gagliardi R et al (1999) Reduction of lung metastasis by ImH[trans-RuCl4(DMSO)Im]: mechanism of the selective action investigated on mouse tumors. Anticancer Drugs 10:129–138

Cocchietto M, Sava G (2000) Blood concentration and toxicity of the antimetastasis agent NAMI-A following repeated intravenous treatment in mice. Pharmacol Toxicol 87:193–197

Rademaker-Lakhai JM, van den Bongard D, Pluim D, Beijnen JH, Schellens JH (2004) A Phase I and pharmacological study with imidazolium-trans-DMSO-imidazole-tetrachlororuthenate, a novel ruthenium anticancer agent. Clin Cancer Res 10:3717–3727

Brouwers EE, Tibben MM, Rosing H, Schellens JH, Beijnen JH (2007) Determination of ruthenium originating from the investigational anti-cancer drug NAMI-A in human plasma ultrafiltrate, plasma, and urine by inductively coupled plasma mass spectrometry. Rapid Commun Mass Spectrom 21:1521–1530

Galanski M, Arion VB, Jakupec MA, Keppler BK (2003) Recent developments in the field of tumor-inhibiting metal complexes. Curr Pharm Des 9:2078–2089

Kapitza S, Pongratz M, Jakupec MA, Heffeter P, Berger W et al (2005) Heterocyclic complexes of ruthenium(III) induce apoptosis in colorectal carcinoma cells. J Cancer Res Clin Oncol 131:101–110

Kapitza S, Jakupec MA, Uhl M, Keppler BK, Marian B (2005) The heterocyclic ruthenium(III) complex KP1019 (FFC14A) causes DNA damage and oxidative stress in colorectal tumor cells. Cancer Lett 226:115–121

Heffeter P, Pongratz M, Steiner E, Chiba P, Jakupec MA et al (2005) Intrinsic and acquired forms of resistance against the anticancer ruthenium compound KP1019 [indazolium trans-[tetrachlorobis(1H-indazole)ruthenate (III)] (FFC14A). J Pharmacol Exp Ther 312:281–289

Hartinger CG, Zorbas-Seifried S, Jakupec MA, Kynast B, Zorbas H et al (2006) From bench to bedside–preclinical and early clinical development of the anticancer agent indazolium trans-[tetrachlorobis(1H-indazole)ruthenate(III)] (KP1019 or FFC14A). J Inorg Biochem 100:891–904

Lentz F, Drescher A, Lindauer A, Henke M, Hilger RA et al (2009) Pharmacokinetics of a novel anticancer ruthenium complex (KP1019, FFC14A) in a phase I dose-escalation study. Anticancer Drugs 20:97–103

Henke MM, Richly H, Drescher A, Grubert M, Alex D et al (2009) Pharmacokinetic study of sodium trans[tetrachlorobis(1H-indazole)-ruthenate (III)]/-indazole hydrochloride (1:1.1) (FFC14A) in patients with solid tumors. Int J Clin Pharmacol Ther 47:58–60

Morris RE, Aird RE, Murdoch Pdel S, Chen H, Cummings J et al (2001) Inhibition of cancer cell growth by ruthenium(II) arene complexes. J Med Chem 44:3616–3621

Chen H, Parkinson JA, Parsons S, Coxall RA, Gould RO et al (2002) Organometallic ruthenium(II) diamine anticancer complexes: arene-nucleobase stacking and stereospecific hydrogen-bonding in guanine adducts. J Am Chem Soc 124:3064–3082

Chen H, Parkinson JA, Morris RE, Sadler PJ (2003) Highly selective binding of organometallic ruthenium ethylenediamine complexes to nucleic acids: novel recognition mechanisms. J Am Chem Soc 125:173–186

Hayward RL, Schornagel QC, Tente R, Macpherson JS, Aird RE et al (2005) Investigation of the role of Bax, p21/Waf1 and p53 as determinants of cellular responses in HCT116 colorectal cancer cells exposed to the novel cytotoxic ruthenium(II) organometallic agent, RM175. Cancer Chemother Pharmacol 55:577–583

Gaiddon C, Jeannequin P, Bischoff P, Pfeffer M, Sirlin C et al (2005) Ruthenium (II)-derived organometallic compounds induce cytostatic and cytotoxic effects on mammalian cancer cell lines through p53-dependent and p53-independent mechanisms. J Pharmacol Exp Ther 315:1403–1411

Aird RE, Cummings J, Ritchie AA, Muir M, Morris RE et al (2002) In vitro and in vivo activity and cross resistance profiles of novel ruthenium (II) organometallic arene complexes in human ovarian cancer. Br J Cancer 86:1652–1657

Foster RE, Cole DA, Mead S, Sadler PJ, Grimshaw KM (2009) Investigation into the mechanism of action of the ruthenium(II) organometallic complex, ONCO 4417. In: Proceedings of the American association for cancer research, April 18–22: Abstract 889

Scolaro C, Bergamo A, Brescacin L, Delfino R, Cocchietto M et al (2005) In vitro and in vivo evaluation of ruthenium(II)-arene PTA complexes. J Med Chem 48:4161–4171

Vock CA, Scolaro C, Phillips AD, Scopelliti R, Sava G et al (2006) Synthesis, characterization, and in vitro evaluation of novel ruthenium(II) η6-arene imidazole complexes. J Med Chem 49:5552–5561

Scolaro C, Geldbach TJ, Rochat S (2006) Influence of hydrogen-bonding substituents on the cytotoxicity of RAPTA compounds. Organometallics 25:756–765

Scolaro C, Chaplin AB, Hartinger CG, Bergamo A, Cocchietto M et al. (2007) Tuning the hydrophobicity of ruthenium(II)-arene (RAPTA) drugs to modify uptake, biomolecular interactions and efficacy. Dalton Trans 43:5065–5072

Chatterjee S, Kundu S, Bhattacharyya A, Hartinger CG, Dyson PJ (2008) The ruthenium(II)-arene compound RAPTA-C induces apoptosis in EAC cells through mitochondrial and p53-JNK pathways. J Biol Inorg Chem 13:1149–1155

Schäfer S, Ott I, Gust R, Sheldrick WS (2007) Influence of the polypyridyl (pp) ligand size on the DNA binding properties, cytotoxicity and cellular uptake of organoruthenium(II) complexes of the type [(η6-C6Me6)Ru(L)(pp)] n+ [L = Cl, n = 1; L = (NH2)2CS, n = 2]. Eur J Inorg Chem 19:3034–3046

Schatzschneider U, Niesel J, Ott I, Gust R, Alborzinia H et al (2008) Cellular uptake, cytotoxicity, and metabolic profiling of human cancer cells treated with ruthenium(II) polypyridyl complexes [Ru(bpy)2(N–N)]Cl2 with N–N = bpy, phen, dpq, dppz, and dppn. Chem Med Chem 3:1104–1109

Meggers E, Atilla-Gokcumen GE, Bregman H, Maksimoska J, Mulcahy SP et al (2007) Exploring chemical space with organometallics: ruthenium complexes as protein kinase inhibitors. Synlett 8:1177–1189

Smalley KS, Contractor R, Haass NK, Kulp AN, Atilla-Gokcumen GE et al (2007) An organometallic protein kinase inhibitor pharmacologically activates p53 and induces apoptosis in human melanoma cells. Cancer Res 67:209–217

Debreczeni JE, Bullock AN, Atilla GE, Williams DS, Bregman H et al (2006) Ruthenium half-sandwich complexes bound to protein kinase Pim-1. Angew Chem Int Ed Engl 45:1580–1585

Kim KT, Baird K, Ahn JY, Meltzer P, Lilly M et al (2005) Pim-1 is up-regulated by constitutively activated FLT3 and plays a role in FLT3-mediated cell survival. Blood 105:1759–1767

Adam M, Pogacic V, Bendit M, Chappuis R, Nawijn MC et al (2006) Targeting PIM kinases impairs survival of hematopoietic cells transformed by kinase inhibitor-sensitive and kinase inhibitor-resistant forms of Fms-like tyrosine kinase 3 and BCR/ABL. Cancer Res 66:3828–3835

US Department of Health and Human Services Food and Drug Administration (2004) Innovation or stagnation: challenges and opportunity on the critical path to new medical products. http://www.fda.gov/oc/initiatives/criticalpath/whitepaper.html [last accessed 02/05/2010]

LoRusso PM (2009) Phase 0 clinical trials: an answer to drug development stagnation? J Clin Oncol 27:2586–2588