Run-Time Interoperability Between Neuronal Network Simulators Based on the MUSIC Framework

Springer Science and Business Media LLC - Tập 8 Số 1 - Trang 43-60 - 2010
Mikael Djurfeldt1, Johannes Hjorth1, Jochen Martin Eppler2, Niraj Dudani3, Moritz Helias4, Tobias C. Potjans5, Upinder S. Bhalla3, Markus Diesmann6, Jeanette Hellgren Kotaleski1, Örjan Ekeberg1
1School of Computer Science and Communication, Royal Institute of Technology, 100 44, Stockholm, Sweden
2Honda Research Institute Europe GmbH, Carl-Legien-Straße 30, 63073, Offenbach, Germany
3National Centre for Biological Sciences, Bangalore, India
4Bernstein Center for Computational Neuroscience, Albert-Ludwigs-Universität Freiburg, Hansastraße 9A, 79104, Freiburg, Germany
5Institute of Neurosciences and Medicine, Research Center Jülich, 52425, Jülich, Germany
6RIKEN Brain Science Institute, Wako-shi, 351-0198, Saitama, Japan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Albus, J. S., Bekey, G. A., Holland, J. H., Kanwisher, N. G., Krichmar, J. L., Mishkin, M., et al. (2007). A proposal for a decade of the mind. Science, 317(5843), 1321.

Bower, J. M., & Beeman, D. (1998). The book of GENESIS: Exploring realistic neural models with the GEneral NEural SImulation System (2nd Ed.). New York: Springer.

Brette, R., Rudolph, M., Carnevale, N. T., Hines, M. L., Beeman, D., Bower, J. M., et al. (2007). Simulation of networks of spiking neurons: A review of tools and strategies. Journal of Computational Neuroscience, 23, 349–398.

Cannon, R. C., Gewaltig, M.-O., Gleeson, P., Bhalla, U. S., Cornelis, H., Hines, M. L., et al. (2007). Interoperability of neuroscience modeling software: Current status and future directions. Neuroinformatics, 5(2), 127–138.

Carnevale, N. T., & Hines, M. L. (2006). The NEURON Book. U.K.: Cambridge University Press.

Crook, S., Gleeson, P., Howell, F., Svitak, J., & Silver, R. A. (2007). MorphML: Level 1 of the NeuroML standards for neuronal morphology data and model specification. Neuroinformatics, 5, 96–104.

Crook, S. M., & Howell, F. W. (2007). XML for data representation and model specification in neuroscience. Methods in Molecular Biology, 401, 53–66.

Davison, A. P., Brüderle, D., Eppler, J., Kremkow, J., Muller, E., Pecevski, D., et al. (2009). PyNN: A common interface for neuronal network simulators. Frontiers in Neuroinformatics, 2, 1–10.

Djurfeldt, M., Ekeberg, Ö., & Lansner, A. (2008a). Large-scale modeling—a tool for conquering the complexity of the brain. Frontiers in Neuroinformatics, 2, 1–4. doi:10.3389/neuro.11/001.2008.

Djurfeldt, M., & Lansner, A (2007). Workshop report: 1st INCF workshop on large-scale modeling of the nervous system. Nature Precedings. Available from http://dx.doi.org/10.1038/npre.2007.262.1.

Djurfeldt, M., Lundqvist, M., Johansson, C., Rehn, M., Ekeberg, Ö., & Lansner, A. (2008b). Brain-scale simulation of the neocortex on the BlueGene/L supercomputer. IBM Journal of Research and Development, 52, 31–42.

Ekeberg, Ö., & Djurfeldt, M. (2008). Music—multisimulation coordinator: Request for comments. Available from Nature Precedings http://dx.doi.org/10.1038/npre.2008.1830.1.

Ekeberg, Ö., & Djurfeldt, M. (2009). MUSIC—Multi-Simulation Coordinator, users manual (1st Ed.). Stockholm, Sweden: INCF, Karolinska Institutet, Nobels väg 15 A, SE-171 77, February 2009. http://software.incf.org/software/music.

Eppler, J. M., Helias, M., Muller, E., Diesmann, M., & Gewaltig, M. (2009). PyNEST: A convenient interface to the NEST simulator. Frontiers in Neuroinformatics, 2, 12. doi:10.3389/neuro.11.012.2008.

Gewaltig, M.-O., & Diesmann, M. (2007). NEST (Neural Simulation Tool). Scholarpedia, 2(4), 1430.

Hellgren Kotaleski, J., Plenz, D., & Blackwell, K. T. (2006). Using potassium currents to solve signal to noise problems in inhibitory feedforward networks of the striatum. Journal of Neurophysiology, 95(1), 331–341.

Hjorth, J., Zilberter, M., Oliveira, R. F., Blackwell, K. T., & Hellgren Kotaleski, J. (2008). Gabaergic control of backpropagating action potentials in striatal medium spiny neurons. BMC Neuroscience, 9(Suppl 1), P105. doi:10.1186/1471-2202-9-S1-P105.

King, J. G., Hines, M., Hill, S., Godman, P. H., Markram, H., & Schürmann, F. (2009). A component-based extension framework for large-scale parallel simulations in NEURON. Frontiers in Neuroinformatics, 3, 1–11.

Potjans, T. C., & Diesmann, M. (2008). Consistency of in vitro and in vivo connectivity estimates: Statistical assessment and application to cortical network modeling. In Soc. Neurosci. Abstr. (Vol. 38, pp. 16.1). Washington, DC, U.S.A.

Potjans, T. C., Fukai, T., & Diesmann, M. (2009). Implications of the specific cortical circuitry for the network dynamics of a layered cortical network model. BMC Neuroscience, 10(Suppl 1), P159.

Ray, S., & Bhalla, U. S. (2008). PyMOOSE: Interoperable scripting in python for MOOSE. Frontiers in Neuroinformatics, 2, 6. ISSN 1662-5196, URL: http://www.ncbi.nlm.nih.gov/pubmed/19129924, PMID: 19129924. doi:10.3389/neuro.11.006.2008.

Schemmel, J., Fieres, J., & Meier, K. (2008). Wafer-scale integration of analog neural networks. In Neural Networks, 2008. IJCNN 2008 (pp. 431–438).

Wolf, J. A., Moyer, J. T., Lazarewicz, M. T., Contreras, D., Benoit-Marand, M., O’Donnel, P., et al. (2005). NMDA/AMPA ratio impacts state transitions and entrainment to oscillations in computational model of the nucleus accumbens medium spiny projection neuron. Journal of Neuroscience, 25(40), 9080–9095.