Rule-based vs parametric approaches for developing climate-sensitive site index models: a case study for Scots pine stands in northwestern Spain
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aertsen W, Kint V, van Orshoven J, Özkan K, Muys B (2010) Comparison and ranking of different modelling techniques for prediction of site index in Mediterranean mountain forests. Ecol Model. https://doi.org/10.1016/j.ecolmodel.2010.01.007
Barrio-Anta M, Castedo-Dorado F, Cámara-Obregón A, López-Sánchez CA (2020) Predicting current and future suitable habitat and productivity for Atlantic populations of maritime pine (Pinus pinaster Aiton) in Spain. Ann For Sci. 77(2):41. https://doi.org/10.1007/s13595-020-00941-5, https://link.springer.com/10.1007/s13595-020-00941-5
Bontemps JD, Bouriaud O (2014) Predictive approaches to forest site productivity: Recent trends, challenges and future perspectives. Forestry 87(1):109–128. https://doi.org/10.1023/A:1010933404324
Breiman L (2001) Random forests. Mach Learn 45(1):5–32. https://link.springer.com/article/10.1023/A:1010933404324, https://doi.org/10.1023/A:1010933404324
Canty A, Ripley BD (2017) boot: Bootstrap R (S-Plus) Functions
Carmean W (1972) Site Index Curves for Upland Oaks in the Central States. For Sci. https://doi.org/10.1093/forestscience/18.2.109
Codilan AL, Nakjima T, Tatsuhara S, Shiraisi N (2015) Estimating site index from ecological factors for industrial tree plantation species in Mindanao, Philippines. Bull. Univ. of Tokyo For 133:19–41
Crookston NL, Rehfeldt GE, Dixon GE, Weiskittel AR (2010) Addressing climate change in the forest vegetation simulator to assess impacts on landscape forest dynamics. For Ecol Manag 260(7):1198–1211. https://doi.org/10.1016/j.foreco.2010.07.013
Diéguez-Aranda U, Álvarez González JG, Barrio Anta M, Rojo Alboreca A (2005a) Site quality equations for Pinus sylvestris L. plantations in Galicia (northwestern Spain). Ann For Sci. https://doi.org/10.1051/forest:2005006
Diéguez-Aranda U, Burkhart HE, Rodríguez-Soalleiro R (2005b) Modeling dominant height growth of radiata pine (Pinus radiata D. Don) plantations in north-western Spain. For Ecol Manag. https://doi.org/10.1016/j.foreco.2005.05.015
Diéguez-Aranda U, Castedo Dorado F, Álvarez González JG, Rojo Alboreca A (2006) Dynamic growth model for Scots pine (Pinus sylvestris L.) plantations in Galicia (north-western Spain). Ecol Model. https://doi.org/10.1016/j.ecolmodel.2005.04.026
Efron B, Tibshirani R (1997) Improvements on cross-validation: The .632+ bootstrap method. J Am Stat Assoc. https://doi.org/10.1080/01621459.1997.10474007, arXiv:1011.1669v3
Fick SE, Hijmans RJ (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol. https://doi.org/10.1002/joc.5086
Fontes L, Bontemps JD, Bugmann H, Van Oijen M, Gracia C, Kramer K, Lindner M, Rotzer T, Skovsgaard JP (2010) Models for supporting forest management in a changing environment. Forest Systems 19:8–29. https://doi.org/10.5424/fs/201019S-9315
Gompertz B (1825) On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Phil Transac Roy Soci Londo 115:513–585. https://doi.org/10.1098/rspl.1815.0271
González-Rodríguez M, Diéguez-Aranda U (2020) Exploring the use of learning techniques for relating the site index of radiata pine stands with climate, soil and physiography. For Ecol Manag. p 458. https://doi.org/10.1016/j.foreco.2019.117803
González-Rodríguez M, Dieguez-Aranda U (2021) Height growth paramters of Scots pine plantations in the north-west of Spain from plot measurements and stem analysis [Data set]. https://doi.org/10.5281/zenodo.4535243
Greenwell B, Boehmke B, Cunningham J, Developers GBM (2019) gbm: Generalized Boosted Regression Models. https://cran.r-project.org/package=gbm
Hamel B, Bélanger N, Paré D (2004) Productivity of black spruce and Jack pine stands in Quebec as related to climate, site biological features and soil properties. For Ecol Manag. https://doi.org/10.1016/j.foreco.2003.12.004
Hossfeld J (1822) Mathematika für Forstmänner, Ö konomen und Cameralisten
Kirilenko AP, Sedjo RA (2007) Climate change impacts on forestry. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.0701424104
Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World Map of Köppen-Geiger Climate Classification - (updated with CRU TS 2.1 temperature and VASClimO v1.1 precipitation data 1951 to 2000). Meteorologische Zeitschrift
Kuhn M, Quinlan R (2018) Cubist: Rule- And Instance-Based Regression Modeling. https://cran.r-project.org/package=Cubist
Liaw A, Wiener M (2002) Classification and Regression by randomForest. R News 2(3):18–22. https://cran.r-project.org/doc/Rnews/
Lindner M, Garcia-Gonzalo J, Kolström M, Green T, Reguera R, Maroschek M, Seidl R, Lexer MJ, Netherer S, Schopf A, Kremer A, Delzon S, Barbati A, Marchetti M, Corona P (2008) Impacts of climate change on european forests and options for adaptation. Report to the European Commission Directorate-General for Agriculture and Rural Development
Monserud RA, Huang S, Yang Y (2006) Predicting lodgepole pine site index from climatic parameters in Alberta. For Chron 82(4):562–571. https://doi.org/10.5558/tfc82562-4
Newberry JD (1991) A note on Carmean’s estimate of height from stem analysis data. https://doi.org/10.1093/forestscience/37.1.368
Øyen BH, Blom HH, Gjerde I, Myking T, Sætersdal M, Thunes KH (2006) Ecology, history and silviculture of Scots pine (Pinus sylvestris L.) in western Norway - A literature review. Forestry 79(3):319–329. https://doi.org/10.1093/forestry/cpl019
Pâques LE (2013) Forest tree breeding in Europe: Current state-of-the-art and perspectives. https://doi.org/10.1007/978-94-007-6146-9\_9
Quinlan JR (1992) Learning with continuous classes. Fifth Austrailian Joint Conference of Artifical Intelligence 92:343–348
R Core Team (2018) R: A Language and Environment for Statistical Computing. https://www.r-project.org/
Richards FJ (1959) A flexible growth function for empirical use. J Exp Bot. https://doi.org/10.1093/jxb/10.2.290
Sabatia CO, Burkhart HE (2014) Predicting site index of plantation loblolly pine from biophysical variables. For Ecol Manag. 326:142–156. https://doi.org/10.1016/j.foreco.2014.04.019
Savill PS (2013) The silviculture of trees used in British forestry, 2nd edn. CABI Publishing, Oxfordshire
Seynave I, Gégout JC, Hervé JC, Dhôte JF, Drapier J, Bruno É, Dumé G (2005) Picea abies site index prediction by environmental factors and understorey vegetation: a two-scale approach based on survey databases. Can J For Res 35(7):1669–1678. https://doi.org/10.1139/x05-088
Skovsgaard JP, Vanclay JK (2008) Forest site productivity: A review of the evolution of dendrometric concepts for even-aged stands. Forestry 81(1):13–31. https://doi.org/10.1093/forestry/cpm041
Smith WK, Roy J, Hinckley TM (1995) Ecophysiology of Coniferous Forests. Elsevier, https://doi.org/10.1016/C2009-0-02453-2, https://linkinghub.elsevier.com/retrieve/pii/C20090024532
Swenson JJ, Waring RH, Fan W, Coops N (2005) Predicting site index with a physiologically based growth model across Oregon, USA. Can J For Res. 35(7):1697–1707. https://doi.org/10.1139/x05-089, http://www.nrcresearchpress.com/doi/10.1139/x05-089
Tange T, Ge F (2020) Topographic factors and tree heights of aged Cryptomeria japonica plantations in the Boso Peninsula, Japan. Forests 11(7). https://doi.org/10.3390/F11070771
Valiant LG (1984) A theory of the learnable. In: Proceedings of the sixteenth annual ACM symposium on Theory of computing - STOC ’84. https://doi.org/10.1145/800057.808710
Wang GG, Huang S, Monserud RA, Klos RJ (2004) Lodgepole pine site index in relation to synoptic measures of climate, soil moisture and soil nutrients. For Chron 80(6):678–686. https://doi.org/10.5558/tfc80678-6
Watt MS, Dash JP, Bhandari S, Watt P (2015) Comparing parametric and non-parametric methods of predicting Site Index for radiata pine using combinations of data derived from environmental surfaces, satellite imagery and airborne laser scanning. For Ecol Manag. https://doi.org/10.1016/j.foreco.2015.08.001
Watt MS, Dash JP, Watt P, Bhandari S (2016) Multi-sensor modelling of a forest productivity index for radiata pine plantations. N Z J For Sci. 46(1). https://doi.org/10.1186/s40490-016-0065-z
Watt MS, Palmer DJ, Leonardo EMC, Bombrun M (2021) Use of advanced modelling methods to estimate radiata pine productivity indices. For Ecol Manag. 479:118557. https://doi.org/10.1016/j.foreco.2020.118557, https://linkinghub.elsevier.com/retrieve/pii/S0378112720313268
Weiskittel AR, Crookston NL, Radtke PJ (2011) Linking climate, gross primary productivity, and site index across forests of the western United States. Can J For Res 41(8):1710–1721. https://doi.org/10.1139/x11-086, http://www.nrcresearchpress.com/doi/abs/10.1139/x11-086
