Rule-Learning Events in the Acquisition of a Complex Skill: An Evaluation of Cascade
Tóm tắt
Từ khóa
Tài liệu tham khảo
Anderson, J. R. (1990). The adaptive character of thought. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.
Anderson, J. R. (1993). Rules rfthe mind. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.
Bergadano, F., Giordanna, A, & Ponsero, S. (1989). Deduction in top-down inductive learning. In A. M. Segre (Ed.), Proceedings ofthe Sixth international Work~hop on Machine Learning. Los Altos, CA: Morgan Kaufman.
Bundy, A, Byrd, L., Luger, G., Mellish, C. & Palmer, M. (1979). Solving mechanics problems using meta-level inference. In Proceedings of the Sixth International Joint Conference on A1 (pp. 1017-1027). San Mateo, CA: Morgan Kaufmann.
Carbonell, J. G. (1983). Learning by analogy: Formulating and generalizing plans from past experience. In R. S. Michalski, J. G. Carbonell, & T. M. Mitchell (Eds.), Machine learning: An artificial intelligence approach (pp. 137-162). Palo Alto, CA: Tioga.
Carbonell, J. G. (1986). Derivational analogy: A theory of reconstructive problem solvingand expertise acquisition. In R. S. Michalski, J. G. Carbonell, & T. M. Mitchell (Eds.), Machine learning: An arrificial intelligence approach (Vol. 2. pp. 371-392). San Mateo, CA: Morgan Kaufman.
Chi. M.T.H. & VanLehn, K. (1991). The content of physics self-explanations. The Journal of the Learning Sciences, 1. 69-105.
Conati, C. & Fain Lehrnan, J. (1993). EFH-Soar: Modeling education in highly interactive microworlds. Lecture notes in artificial intelligence. New York: Springer-Verlag.
Conati, C., Gertner, A, VanLehn, K. & Dmzdzel, M. (1997). On-line student modeling for coached problem solving using Bayesian networks. In A. Jameson, C. Paris, & C. Tasso (Eds.), User modeling: Proceedings cfthe Sixth International Conference, UM97. New York: Spring Wien.
de Kleer, J. (1975). Qualitative and quantitative knowledge in classical mechanics (Tech. Rep. No. AI-TR-352). Cambridge, MA: MIT A1 Laboratory.
Dweck, C. S. (1986). Motivational processes affecting learning.American Psychologist, 41, 1 W 1 0 4 8 .
Elio, R. & Scharf, P. B. (1990). Modeling novice-to-expert shifts in problem-solving strategy and knowledge organization. Cognitive Science, 14. 579-639.
Halliday, D. & Resnick, R. (1981). Fundamentals of physics (2nd ed.). New York: Wiley.
Jones, R. (1989). A model ofretrieval in problem solving. Unpublished doctoral dissertation, University of California, lrvine.
Jones, R. M. & VanLehn, K. (1992). A fine-grained model of skill acquisition. In J. Kruschke (Ed.), Proceedings ofthe Fourteenth Annual Conference of the Cognitive Science Society (pp. 873-878). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.
Jones R. M., 1994, Machine Learning, 16, 1
Lamberts K., 1990, European Journal of Cognitive Psychology, 3, 1
Langley, P. (1987). A general theory of discrimination learning. In D. Klahr. P. Langley, & R. Neches (Eds.). Production systemmodels of learning anddevelopment (pp. 99-161). Cambridge, MA: MIT Press.
Langley, P. & Allen, 1. (1993). A unified framework for planning and learning. In S. Minton (Ed.), Machine learning methods forplanning. San Mateo, CA: Morgan Kaufmann.
Langley, P., McKusick, K. B. Allen, J. A, Iba. W. F. &Thompson, K. (1991). A design for the lcarus architecture. SIGART Bulletin, 2. 104-109.
Larkin, J. H. (1981). Enriching formal knowledge: A model for learning to solve textbook physics problems. In J. R. Anderson (Ed.), Cognitive skills and their acquisition (pp. 31 1-334). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.
Lovett, M. C. (1992). Learning by problem solving versus by examples: The benefits of generating and receiving information. In J. Kruschke (Ed.), Proceedings of the Fourteenth Annual Conference of the Cognitive Science Society (pp. 956961). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.
McDermott, J. & Larkin, J. H. (1978). Re-representing textbook physics problems. In Proceedings r,f the Second National Conference ofthe Canadian Socieryfor Computational Studies of Intelligence (pp. 156164). Toronto, Canada.
Neches. R. (1987). Learning through incremental refinement of procedures. In D. Klahr, P. Langley, & R. Neches (Eds.), Production system models of learning and development (pp. 163-219). Cambridge, MA: MIT Press.
Newell, A. (1990). UniBed theories ($cognition. Cambridge, MA: Harvard University Press.
Novak, G. S. & Araya, A. A. (1980). Research on expert problem solving in physics. In Proceedings r$ the First National Conference on Artificial Intelligence (pp. 178-180). Menlo Park, CA: AAAI.
Ohlsson, S. (1987). Transfer of training in procedural learning: A matter of conjectures and refutations? In L. Bolc (Ed.), Computational models oflearning (pp. 55-88). New York: Springer-Verlag.
Ohlsson, S. (1993). The interaction between knowledge and practice in the acquisition of cognitive skills. In A. Merowitz & S. Chipman (Eds.), Cognitive models of complex learning (pp. 147-208). Dordrecht, The Netherlands: Kluwer.
Pazzani, M . J. (1990). Creafing a memory of causal relationships: An integration of empirical and explanation-based learning methods. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.
Pazzani, M., Myer, M. & Flowers, M. (1986). The role of prior causal theories in generalization. In T. Kehler, S. Rosenschein, R. Filman, & P. F. Patel-Schneider (Eds.), Proceedings of the Fifrh National Conference on Artipcial Intelligence (pp. 545-550). Menlo Park, CA: Morgan Kaufman.
Pirolli, P. & Bielaczyc, K. (1989). Empirical analyses of self-explanation and transfer in learning to program. In Proceedings ofthe Eleventh Annual Conference of the Cognitive Science Society (pp. 459457). Hillsdale, NJ: Lawrence Erlbaum Associates. Inc.
Ram, A. (1990). Incremental learning of explanation patterns and their indices. In B. Porter & R. Mooney (Eds.), Machine learning: Proceedings ofthe Seventh International Conference (pp. 3 13-320). Los Altos, CA: Morgan Kaufman.
Ram, A, &Cox, M. (1994). Introspective reasoning using meta-explanations formultistmtegy learning. In R. Michalski & G. Tecuci (Eds.), Machine learning: A multistraregy approach (Vol. 4, pp. 349-377). San Mateo, CA: Morgan Kaufmann.
Recker, M . M. & Pirolli, P. (1995). Modeling individual differences in students' learning strategies. The Journal ofthe Learning Sciences. 4. 1-38.
Reimann, P. & Schult, T. J. (1993). Understanding and using worked-out examples: A computational model. In G. S. a. K. F. Wender (Ed.), The cognitivepsychology of knowledge (pp. 177-201). Amsterdam: Elsevier.
Reimann, P., Wichmann, S. & Schult, T., J. (1993). A learning strategy model for worked-out examples. In P. Brna, S. Ohlsson, & H. Pain (Eds.), Artificial intelligence in education: Proceedings of' AI-ED93 (pp. 29C297). Charlottesville. VA: Association for the Advancement of Computing in Education.
Ruiz, D. & Newell, A. (1989). Tower noticing triggers strategy change in the Tower of Hanoi: A Soar model. In G. Ohlsson & E. Smith (Eds.), Proceedings ofthe Eleventh Annual Conference of the Cognitive Science Sociery (pp. 522-529). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.
Russell, S. & Nowig, P. (1995). Artificial intelligence: A modern approach. Los Altos, CA: Morgan Kaufman.
Schank, R. C. (1986). Explunationpatterns: Understanding mechunically und creatively. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.
Schoenfeld, A. H., Smith, J. P. & Arcavi, A. (1993). Learning: The microgenetic analysis of one student's evolving understanding of a complex subject matter domain. In R. Glaser (Ed.), Advances in instructionalpsychology (Vol. 4, pp. 55-177). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.
Schon, D. A. (1983). The reflective practitioner: How professionals think in action. New York: Basic Books.
Shrager J., 1987, Machine Learning, 2, 247
Shrager, I. (1990). Commonsense perception and the psychology of theory formation. In J. Shrager & P. Langley (Eds.), Computational models of scientflc discovery and theory formation (pp. 437470). San Mateo, CA: Morgan Kaufmann.
Shrager J., 1986, International Journal of Man-Machine Studies, 25, 153, 10.1016/S0020-7373(86)80075-X
Siegler, R. S. & Jenkins. E. (1989). How children discover new strategies. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.
Sussman, G. J. (1975). A computer model of skill acquisition. New York: Elsevier.
VanLehn. K. (1996). Conceptual and meta learning during coached problem solving. In C. Frasson, G. Gauthier, & A. Lesgold (Eds.), ITS96: Proceedings of the Thirdlnternational Conference on Intelligent Tutoring Systems (pp. 2 9 4 7 ) . New York: Springer-Verlag.
VanLehn, K., Ball, W. & Kowalski, B. (1990). Explanation-based learning of correctness: Towards a model of the self-explanation effect. In M. Piattelli-Palmarini (Ed.), Proceedings of the Twelfth Annual Conference of the Cognitive Science Sociee (pp. 717-724) . Hillsdale, NJ: Lawrence Erlbaum Associates, lnc.
VanLehn, K. & Jones, R. M. (1993a). Better learners use analogical problem solving sparingly. In P. E. Utgoff (Ed.), Machine learning: Proceedings of the Tenth Annual Conference (pp. 338-345). San Mateo, CA: Morgan Kaufmann.
VanLehn, K. & Jones, R. M. (1993b). Integration of analogical search control and explanation-based learning of correctness. In S. Minton (Ed.), Machine learning methods for planning (pp. 273-315). Los Altos, CA: Morgan Kaufmann.
VanLehn, K. & Jones, R. M. (1993~). Learning by explaining examples to oneself: A computational model. In S. Chipman & A. Meyrowitz (Eds.), Cognitive models of complex learning (pp. 25-82). Dordrecht, The Netherlands: Kluwer.
VanLehn. K. & Jones, R. M. (1993d). What mediates the self-explanation effect? Knowledge gaps, schemas or analogies? In M. Polson (Ed.), Proceedings of the Fifreenth Annual Conference of the Cognitive Science Society (pp. 1034-1039). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.