Rotationally mediated vibration–vibration and vibration–translation energy transfer in silane

Journal of Chemical Physics - Tập 90 Số 10 - Trang 5434-5442 - 1989
J. Hetzler1, G. Millot1, J. I. Steinfeld1
1Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139

Tóm tắt

Vibration–vibration (V–V) and vibration–translation (V–T) energy transfer efficiencies have been measured for the v4=1 mode of silane in collisions with He, Ar, Kr, H2, CH4, and itself, using the time-resolved infrared double-resonance technique. The V–V cross sections are approximately one-third to one-half of the Lennard-Jones cross sections, and show a variation with the nuclear–spin symmetry state (A, E, or F) of the molecule. The ν4 V–T deactivation efficiencies are in the range 0.0001–0.002, with the polyatomic molecules being about an order of magnitude more efficient than the noble-gas atoms. This can be quantitatively interpreted by the vibration–rotation (V–R) resonance transfer model of Poulsen et al. [J. Chem. Phys. 58, 3381 (1973)]. A simple breathing-sphere model does not, however, provide a good representation of the V–T collision efficiencies for rare gas–silane collisions.

Từ khóa


Tài liệu tham khảo

1987, Annu. Rev. Phys. Chem., 38, 109, 10.1146/annurev.pc.38.100187.000545

1979, J. Chem. Phys., 70, 1187, 10.1063/1.437598

1979, Appl. Phys. Lett., 35, 626, 10.1063/1.91230

1981, J. Am. Chem. Soc., 103, 6813, 10.1021/ja00413a005

1985, Chem. Phys. Lett., 117, 495, 10.1016/0009-2614(85)80289-X

1987, Spectrochim. Acta Part A, 43, 257, 10.1016/0584-8539(87)80099-5

1979, J. Chem. Phys., 71, 3648, 10.1063/1.438808

1981, J. Chem. Phys., 74, 2189, 10.1063/1.441379

1982, J. Chem. Phys., 77, 3824, 10.1063/1.444357

1984, J. Chem. Phys., 80, 3499, 10.1063/1.447109

1985, Chem. Phys. Lett., 118, 464, 10.1016/0009-2614(85)85333-1

1988, J. Chem. Phys., 88, 6838, 10.1063/1.454382

1988, J. Chem. Phys., 88, 6742, 10.1063/1.454418

1962, Trans. Faraday Soc., 58, 2336, 10.1039/TF9625802336

1981, Teoreticheskaya i Éksperimental’naya Khimiya, 17, 699

1984, Can. J. Phys., 62, 254, 10.1139/p84-040

1986, Can. J. Phys., 64, 341

1970, J. Chem. Phys., 52, 5421, 10.1063/1.1672793

1971, J. Chem. Phys., 54, 4080, 10.1063/1.1675469

1969, J. Chem. Phys., 50, 4996, 10.1063/1.1670996

1922, Proc. Phys. Soc. (London), 34, 181

1986, J. Chem. Phys., 85, 6234, 10.1063/1.451493

1983, J. Chem. Phys., 78, 3922, 10.1063/1.445116

1987, J. Chem. Phys., 86, 4709, 10.1063/1.452687

1987, J. Chem. Phys., 86, 3380, 10.1063/1.451996

1984, J. Chem. Phys., 80, 1367, 10.1063/1.446821

1986, J. Quant. Spectrosc. Radiat. Transfer, 36, 365, 10.1016/0022-4073(86)90061-0

1981, J. Chem. Phys., 74, 3882, 10.1063/1.441564

1989, Spectrochimica Acta Part A, 45, 5, 10.1016/0584-8539(89)80021-2

1973, J. Chem. Phys., 58, 2679, 10.1063/1.1679567

1973, J. Chem. Phys., 58, 3373, 10.1063/1.1679665

1982, Chem. Phys. Lett., 85, 521, 10.1016/0009-2614(82)80350-3

1984, Chem. Phys. Lett., 104, 393, 10.1016/0009-2614(84)80086-X

1956, J. Chem. Phys., 25, 439, 10.1063/1.1742943

1965, Trans. Faraday Soc., 61, 1053, 10.1039/tf9656101053

1967, J. Chem. Phys., 46, 4491, 10.1063/1.1840573

1982, Chem. Phys. Lett., 93, 515, 10.1016/0009-2614(82)83231-4

1973, J. Chem. Phys., 58, 3381, 10.1063/1.1679666

1963, J. Chem. Phys., 38, 2641, 10.1063/1.1733565

1964, J. Chem. Phys., 40, 573, 10.1063/1.1725158