Rotational Thromboelastometry for Characterising Acid-Induced Gelation of Cross-Linked Casein

Food Biophysics - Tập 10 - Trang 25-29 - 2014
Norbert Raak1, Siegmund Gehrisch2, Harald Rohm1, Doris Jaros1
1Institute of Food Technology and Bioprocess Engineering, Technische Universität Dresden, Dresden, Germany
2Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus Dresden, Germany

Tóm tắt

Rotational thromboelastometry (ROTEM), a method for the clinical characterisation of blood clot formation and fibrinolysis, has been applied to study the acid-induced gelation of cross-linked casein. The results were compared to those from small amplitude oscillatory shear (SAOS) experiments that were carried out on the same samples: acid casein in phosphate buffer and reconstituted skim milk were treated with microbial transglutaminase to achieve cross-linking of casein and to obtain gels with a broad range of stiffness upon acidification with glucono-δ-lactone. Gelation onset was detected consistently 2 min later by ROTEM compared to SAOS, which my be attributed to the differences in the onset criteria of both methods. Comparison of maximum clot firmness (ROTEM) and maximum storage modulus (rheometry) as indicators for gel stiffness revealed a strong non-linear relationship, that was successfully fitted to the common model of ROTEM clot elasticity through adding a proportionality coefficient. From the results of this study it can be concluded that ROTEM might serve as a useful tool for characterising the acid-induced gelation of proteins that are available in only small quantities.

Tài liệu tham khảo

J.A. Lucey, J. Dairy Sci. 85, 281 (2002) S. P. F. M. Roefs, Structure of acid casein gels: A study of gels formed after acidification in the cold, PhD thesis, Wageningen University (1985) J.A. Lucey, T. van Vliet, K. Grolle, T. Geurts, P. Walstra, Int. Dairy J. 7, 381 (1997) G. Bittante, B. Contiero, A. Cecchinato, Int. Dairy J. 29, 115 (2013) D.J. McMahon, R.J. Brown, J. Dairy Sci. 65, 1639 (1982) R. Aleandri, J.C. Schneider, L.G. Buttazzoni, J. Dairy Sci. 72, 1967 (1989) S.M. Donahue, C.M. Otto, J. Vet. Emerg. Crit. Care 15, 9 (2005) D. Bolliger, M.D. Seeberger, K.A. Tanaka, Transfus. Med. Rev. 26, 1 (2012) K.A. Tanaka, D. Bolliger, R. Vadlamudi, A. Nimmo, J Cardiothor Vasc Anesth 26, 1083 (2012) T. Lang, A. Bauters, S.L. Braun, B. Pötzsch, K.-W. von Pape, H.-J. Kolde, M. Lakner, Blood Coagul Fibrin 16, 301 (2005) T. Tomori, D. Hupalo, K. Teranishi, S. Michaud, M. Hammett, D. Freilich, R. McCarron, F. Arnaud, Blood Coagul Fibrin 21, 20 (2010) T. Lang, K. Johanning, H. Metzler, S. Piepenbrock, C. Solomon, N. Rahe-Meyer, K.A. Tanaka, Anesth. Analg. 108, 751 (2009) M. Auldist, C. Mullins, B. O’Brien, T. Guinee, Milchwissenschaft 56, 89 (2001) D. Jaros, C. Partschefeld, T. Henle, H. Rohm, J. Texture Stud. 37, 113 (2006) J. Buchert, D. Ercili Cura, H. Ma, C. Gasparetti, E. Monogioudi, G. Faccio, M. Mattinen, H. Boer, R. Partanen, E. Selinheimo, R. Lantto, K. Kruus, Annu Rev Food Sci Technol 1, 113 (2010) D. Jaros, M. Jacob, C. Otto, H. Rohm, Int. Dairy J. 20, 321 (2010) D. Jaros, U. Schwarzenbolz, N. Raak, J. Löbner, T. Henle, H. Rohm, Int. Dairy J. (2013). doi:10.1016/j.idairyj.2013.10.011 H. Rohm, F. Ullrich, C. Schmidt, J. Löbner, D. Jaros, J. Texture Stud. 45, 130 (2014) M. Jacob, S. Nöbel, D. Jaros, H. Rohm, Food Hydrocoll. 25, 928 (2011) D. Jaros, J. Pätzold, U. Schwarzenbolz, H. Rohm, Food Biophys 1, 124 (2006) E. Dickinson, L. Matia Merino, Food Hydrocoll. 16, 321 (2002) A.L.M. Braga, M. Menossi, R.L. Cunha, Int. Dairy J. 16, 389 (2006) S. Mende, M. Peter, K. Bartels, T. Dong, H. Rohm, D. Jaros, Carbohyd Polym 98, 1389 (2013) S. Mende, M. Peter, K. Bartels, H. Rohm, D. Jaros, Food Hydrocoll. 32, 178 (2013)