Đặc điểm rễ và sự sẵn có dinh dưỡng và carbon trong đất điều khiển sự đa dạng và thành phần vi sinh vật trong đất tại một khu rừng ôn đới phía bắc

Springer Science and Business Media LLC - Tập 479 - Trang 281-299 - 2022
Bitao Liu1, Fei Han1, Peng Ning2, Hongbo Li3, Zed Rengel4,5
1College of Forestry, Shanxi Agricultural University, Taigu, China
2Zhongtiaoshan Forestry Bureau of Shanxi Province, Touma, China
3Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
4Soil Science and Plant Nutrition, UWA School of Agriculture and Environment, The University of Western Australia, Perth, Australia
5Institute for Adriatic Crops and Karst Reclamation, Split, Croatia

Tóm tắt

Các đặc điểm của rễ đóng vai trò quan trọng trong việc điều tiết các cộng đồng vi sinh vật trong đất bằng cách làm thay đổi các tham số của đất. Tuy nhiên, sự biến đổi của các đặc điểm rễ giữa các loài cây ảnh hưởng đến vi sinh vật trong đất dưới các môi trường dinh dưỡng khác nhau là điều chưa rõ. Chúng tôi đã chọn sáu loài cây nấm mycorrhiza ngoại (ECM) chiếm ưu thế với đường kính rễ khác nhau trong một khu rừng ôn đới, và đo lường sự phát triển của rễ, đặc điểm hình thái và hóa học, các tham số của đất, cùng với các cộng đồng vi sinh vật dưới ba chế độ bổ sung dinh dưỡng, bao gồm chế độ đối chứng không bón phân (CK), phân bón vô cơ (IF) và phân bón hữu cơ (OF), sử dụng túi phát triển rễ. So với CK, việc bổ sung IF và OF đã làm giảm đa dạng α-vi khuẩn trong đất, và việc bổ sung IF cũng làm giảm đa dạng α-nấm trong đất. Mạng lưới đồng tồn tại của cộng đồng trở nên phức tạp hơn sau khi bổ sung OF so với các phương pháp CK và IF. Các đặc điểm hình thái của rễ (đường kính rễ và chiều dài rễ cụ thể) có mối tương quan dương với thành phần cộng đồng nấm, trong khi các đặc điểm hóa học của rễ (tổng đường hòa tan và hàm lượng phenol) ảnh hưởng đến thành phần và đa dạng α của cộng đồng vi khuẩn và nấm trong các chế độ CK và IF. Các đặc điểm phát triển của rễ (chiều dài rễ và sinh khối) ảnh hưởng đến thành phần và đa dạng α của các cộng đồng vi khuẩn và nấm trong tất cả các chế độ. Các đặc điểm rễ mảnh và các tham số của đất tương tác giải thích nhiều biến thể hơn ở cộng đồng vi khuẩn so với cộng đồng nấm. Những phát hiện của chúng tôi cho thấy rằng sự biến đổi của các đặc điểm rễ giữa các loài cây, sự sẵn có dinh dưỡng và carbon, cùng với sự tương tác giữa chúng có thể thúc đẩy sự đa dạng và thành phần của vi khuẩn và nấm trong đất.

Từ khóa

#đặc điểm rễ #vi sinh vật trong đất #cộng đồng vi sinh vật #rừng ôn đới #nấm mycorrhiza ngoại #đa dạng α #dinh dưỡng #carbon

Tài liệu tham khảo

Adams TS, Mccormack ML, Eissenstat DM (2013) Foraging strategies in trees of different root morphology: the role of root lifespan. Tree Physiol 33:940–948. https://doi.org/10.1093/treephys/tpt067 Allison SD, Hanson CA, Treseder KK (2007) Nitrogen fertilization reduces diversity and alters community structure of active fungi in boreal ecosystems. Soil Biol Biochem 39:1878–1887. https://doi.org/10.1016/j.soilbio.2007.02.001 Altschul SF, Madden TL, Schäffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. https://doi.org/10.2503/jjshs.58.977 Averill C, Turner BL, Finzi AC (2014) Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505:543–545. https://doi.org/10.1038/nature12901 Badri DV, Chaparro JM, Zhang R et al (2013) Application of natural blends of phytochemicals derived from the root exudates of arabidopsis to the soil reveal that phenolic-related compounds predominantly modulate the soil microbiome. J Biol Chem 288:4502–4512. https://doi.org/10.1074/jbc.M112.433300 Bais HP, Weir TL, Perry LG et al (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266. https://doi.org/10.1146/annurev.arplant.57.032905.105159 Baldrian P, Kolaiřík M, Štursová M et al (2012) Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. ISME J 6:248–258. https://doi.org/10.1038/ismej.2011.95 Bao SN (2000) Soil agrochemical analysis. China Agricultural Press, Beijing, pp 20–38 (In Chinese) Bardgett RD (2017) Plant trait-based approaches for interrogating belowground function. Biol Environ 117B:1–13. https://doi.org/10.3318/bioe.2017.03 Bardgett RD, Freeman C, Ostle NJ (2008) Microbial contributions to climate change through carbon cycle feedbacks. ISME J 2:805–814. https://doi.org/10.1038/ismej.2008.58 Bardgett RD, Mommer L, De Vries FT (2014) Going underground: root traits as drivers of ecosystem processes. Trends Ecol Evol 29:692–699. https://doi.org/10.1016/j.tree.2014.10.006 Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13. https://doi.org/10.1111/j.1574-6941.2009.00654.x Bergmann J, Weigelt A, van der Plas F et al (2020) The fungal collaboration gradient dominates the root economics space in plants. Sci Adv 6:eaba3756. https://doi.org/10.1126/sciadv.aba3756 Blackwood CB, Waldrop MP, Zak DR, Sinsabaugh RL (2007) Molecular analysis of fungal communities and laccase genes in decomposing litter reveals differences among forest types but no impact of nitrogen deposition. Environ Microbiol 9:1306–1316. https://doi.org/10.1111/j.1462-2920.2007.01250.x Boeckler GA, Gershenzon J, Unsicker SB (2011) Phenolic glycosides of the Salicaceae and their role as anti-herbivore defenses. Phytochemistry 72:1497–1509. https://doi.org/10.1016/j.phytochem.2011.01.038 Bray JR, Curtis JT (1957) An ordination of the upland forest communities of southern wisconsin. Ecol Monogr 27:325–349. https://doi.org/10.2307/1942268 Campbell BD, Grime JP, Mackey JML (1991) A trade-off between scale and precision in resource foraging. Oecologia 87:532–538. https://doi.org/10.1007/bf00320417 Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Publ Gr 7:335–336. https://doi.org/10.1038/nmeth0510-335 Chen H, Jiang W (2014) Application of high-throughput sequencing in understanding human oral microbiome related with health and disease. Front Microbiol 5:1–6. https://doi.org/10.3389/fmicb.2014.00508 De Graaff MA, Classen AT, Castro HF, Schadt CW (2010) Labile soil carbon inputs mediate the soil microbial community composition and plant residue decomposition rates. New Phytol 188:1055–1064. https://doi.org/10.1111/j.1469-8137.2010.03427.x de Vries FT, Manning P, Tallowin JRB et al (2012) Abiotic drivers and plant traits explain landscape-scale patterns in soil microbial communities. Ecol Lett 15:1230–1239. https://doi.org/10.1111/j.1461-0248.2012.01844.x DeSantis TZ, Hugenholtz P, Larsen N et al (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072. https://doi.org/10.1128/AEM.03006-05 Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461. https://doi.org/10.1093/bioinformatics/btq461 Eisenhauer N, Lanoue A, Strecker T et al (2017) Root biomass and exudates link plant diversity with soil bacterial and fungal biomass. Sci Rep 7:1–8. https://doi.org/10.1038/srep44641 Eissenstat DM (1991) On the relationship between specific root length and the rate of root proliferation: a field study using citrus rootstocks. New Phytol 118:63–68. https://doi.org/10.1111/j.1469-8137.1991.tb00565.x Eissenstat DM (1992) Costs and benefits of constructing roots of small diameter. J Plant Nutr 15:763–782. https://doi.org/10.1080/01904169209364361 Eissenstat DM, Kucharski JM, Zadworny M et al (2015) Linking root traits to nutrient foraging in arbuscular mycorrhizal trees in a temperate forest. New Phytol 208:114–124. https://doi.org/10.1111/nph.13451 Erktan A, Roumet C, Bouchet D et al (2018) Two dimensions define the variation of fine root traits across plant communities under the joint influence of ecological succession and annual mowing. J Ecol 106:2031–2042. https://doi.org/10.1111/1365-2745.12953 Fernandez CW, Kennedy PG (2016) Revisiting the ‘Gadgil effect’: do interguild fungal interactions control carbon cycling in forest soils? New Phytol 209:1382–1394. https://doi.org/10.1111/nph.13648 Fang YT, Gundersen P, Mo JM, Zhu WX (2008) Input and output of dissolved organic and inorganic nitrogen in subtropical forests of South China under high air pollution. Biogeosciences 5:339–352. https://doi.org/10.5194/bg-5-339-2008 Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364. https://doi.org/10.1890/05-1839 Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A 103:626–631. https://doi.org/10.1073/pnas.0507535103 Finzi AC, Abramoff RZ, Spiller KS et al (2015) Rhizosphere processes are quantitatively important components of terrestrial carbon and nutrient cycles. Glob Chang Biol 21:2082–2094. https://doi.org/10.1111/gcb.12816 Folin O, Denis W (1912) On phosphotungstic-phosphomolybdic compounds as color reagents. J Biol Chem 12:239–243. https://doi.org/10.1016/s0021-9258(18)88697-5 Francioli D, Schulz E, Lentendu G et al (2016) Mineral vs. organic amendments: Microbial community structure, activity and abundance of agriculturally relevant microbes are driven by long-term fertilization strategies. Front Microbiol 7:1446. https://doi.org/10.3389/fmicb.2016.01446 Geisseler D, Scow KM (2014) Long-term effects of mineral fertilizers on soil microorganisms-A review. Soil Biol Biochem 75:54–63. https://doi.org/10.1016/j.soilbio.2014.03.023 Gill SR, Pop M, DeBoy RT et al (2006) Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359. https://doi.org/10.1126/science.39.1015.881 Gould IJ, Quinton JN, Weigelt A et al (2016) Plant diversity and root traits benefit physical properties key to soil function in grasslands. Ecol Lett 19:1140–1149. https://doi.org/10.1111/ele.12652 Grigulis K, Lavorel S, Krainer U et al (2013) Relative contributions of plant traits and soil microbial properties to mountain grassland ecosystem services. J Ecol 101:47–57. https://doi.org/10.1111/1365-2745.12014 Groleau-Renaud V, Plantureux S, Guckert A (1998) Influence of plant morphology on root exudation of maize subjected to mechanical impedance in hydroponic conditions. Plant Soil 201:231–239. https://doi.org/10.1023/A:1004316416034 Gu Y, Wang X, Yang T et al (2020) Chemical structure predicts the effect of plant-derived low-molecular weight compounds on soil microbiome structure and pathogen suppression. Funct Ecol 34:2158–2169. https://doi.org/10.1111/1365-2435.13624 Gunina A, Kuzyakov Y (2015) Sugars in soil and sweets for microorganisms: Review of origin, content, composition and fate. Soil Biol Biochem 90:87–100. https://doi.org/10.1016/j.soilbio.2015.07.021 Guyonnet JP, Cantarel AAM, Simon L, Haichar FZ (2018) Root exudation rate as functional trait involved in plant nutrient-use strategy classification. Ecol Evol 8:8573–8581. https://doi.org/10.1002/ece3.4383 Han M, Sun L, Gan D et al (2020) Root functional traits are key determinants of the rhizosphere effect on soil organic matter decomposition across 14 temperate hardwood species. Soil Biol Biochem 151:108019. https://doi.org/10.1016/j.soilbio.2020.108019 Hansen J, Møller I (1975) Percolation of starch and soluble carbohydrates from plant tissue for quantitative determination with anthrone. Anal Biochem 68:87–94. https://doi.org/10.1016/0003-2697(75)90682-X Hartmann M, Frey B, Mayer J et al (2015) Distinct soil microbial diversity under long-term organic and conventional farming. ISME J 9:1177–1194. https://doi.org/10.1038/ismej.2014.210 Haynes RJ (2000) Labile organic matter as an indicator of organic matter quality in arable and pastoral soils in New Zealand. Soil Biol Biochem 32:211–219. https://doi.org/10.1016/S0038-0717(99)00148-0 Higdon SJU, Devost D, Higdon JL et al (2004) The SMART data analysis package for the infrared spectrograph on the spitzer space telescope. Publ Astron Soc Pacific 116:975–984. https://doi.org/10.1086/425083 Hodge A (2004) The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytol 162:9–24. https://doi.org/10.1111/j.1469-8137.2004.01015.x Iversen CM, McCormack ML, Powell AS et al (2017) A global Fine-Root Ecology Database to address below-ground challenges in plant ecology. New Phytol 215:15–26. https://doi.org/10.1111/nph.14486 Kaštovská E, Edwards K, Picek T, Šantrůčková H (2015) A larger investment into exudation by competitive versus conservative plants is connected to more coupled plant–microbe N cycling. Biogeochemistry 122:47–59. https://doi.org/10.1007/s10533-014-0028-5 King WL, Yates CF, Guo J et al (2021) The hierarchy of root branching order determines bacterial composition, microbial carrying capacity and microbial filtering. Commun Biol 4:1–10. https://doi.org/10.1038/s42003-021-01988-4 Kong D, Ma C, Zhang Q et al (2014) Leading dimensions in absorptive root trait variation across 96 subtropical forest species. New Phytol 203:863–872. https://doi.org/10.1111/nph.12842 Kowalchuk GA, Stephen JR (2001) Ammonia-oxidizing bacteria: A model for molecular microbial ecology. Annu Rev Microbiol 55:485–529. https://doi.org/10.1146/annurev.micro.55.1.485 Leff JW, Jones SE, Prober SM et al (2015) Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc Natl Acad Sci U S A 112:10967–10972. https://doi.org/10.1073/pnas.1508382112 Legay N, Baxendale C, Grigulis K et al (2014) Contribution of above- and below-ground plant traits to the structure and function of grassland soil microbial communities. Ann Bot 114:1011–1021. https://doi.org/10.1093/aob/mcu169 Li J, Cooper JM, Lin Z et al (2015) Soil microbial community structure and function are significantly affected by long-term organic and mineral fertilization regimes in the North China Plain. Appl Soil Ecol 96:75–87. https://doi.org/10.1016/j.apsoil.2015.07.001 Li J, Zhao B, qiang LIX, ying et al (2008) Effects of long-term combined application of organic and mineral fertilizers on microbial biomass, soil enzyme activities and soil fertility. Agric Sci China 7:336–343. https://doi.org/10.1016/S1671-2927(08)60074-7 Li T, Chen S, Wu S et al (2016) Effect of the cutting intensity on structural characteristics of water conservation forest. J Northwest For Univ 31:102–108 (in Chinese) Liu S, Wang H, Tian P et al (2020) Decoupled diversity patterns in bacteria and fungi across continental forest ecosystems. Soil Biol Biochem 144:107763. https://doi.org/10.1016/j.soilbio.2020.107763 López-Angulo J, de la Cruz M, Chacón-Labella J et al (2020) The role of root community attributes in predicting soil fungal and bacterial community patterns. New Phytol 228:1070–1082. https://doi.org/10.1111/nph.16754 Ma A, Zhuang X, Wu J et al (2013) Ascomycota members dominate fungal communities during straw residue decomposition in arable soil. PLoS ONE 8:1–9. https://doi.org/10.1371/journal.pone.0066146 Maestre FT, Delgado-Baquerizo M, Jeffries TC et al (2015) Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proc Natl Acad Sci U S A 112:15684–15689. https://doi.org/10.1073/pnas.1516684112 Magoč T, Salzberg SL (2011) FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–2963. https://doi.org/10.1093/bioinformatics/btr507 Maupetit A, Larbat R, Pernaci M et al (2018) Defense compounds rather than nutrient availability shape aggressiveness trait variation along a leaf maturity gradient in a biotrophic plant pathogen. Front Plant Sci 9:1396. https://doi.org/10.3389/fpls.2018.01396 McArdle BH, Anderson MJ (2001) Fitting multivariate models to community data: A comment on distance-based redundancy analysis. Ecology 82:290–297. https://doi.org/10.2307/2680104 Meier IC, Tückmantel T, Heitkötter J et al (2020) Root exudation of mature beech forests across a nutrient availability gradient: the role of root morphology and fungal activity. New Phytol 226:583–594. https://doi.org/10.1111/nph.16389 Nie Y, Wang M, Zhang W et al (2018) Ammonium nitrogen content is a dominant predictor of bacterial community composition in an acidic forest soil with exogenous nitrogen enrichment. Sci Total Environ 624:407–415. https://doi.org/10.1016/j.scitotenv.2017.12.142 Nuccio EE, Starr E, Karaoz U et al (2020) Niche differentiation is spatially and temporally regulated in the rhizosphere. ISME J 14:1–16. https://doi.org/10.1038/s41396-019-0582-x Osborne BB, Soper FM, Nasto MK et al (2021) Litter inputs drive patterns of soil nitrogen heterogeneity in a diverse tropical forest: Results from a litter manipulation experiment. Soil Biol Biochem 158:108247. https://doi.org/10.1016/j.soilbio.2021.108247 Ostonen I, Truu M, Helmisaari HS et al (2017) Adaptive root foraging strategies along a boreal–temperate forest gradient. New Phytol 215:977–991. https://doi.org/10.1111/nph.14643 Pan H, Chen M, Feng H et al (2020) Organic and inorganic fertilizers respectively drive bacterial and fungal community compositions in a fluvo-aquic soil in northern China. Soil Tillage Res 198:104540. https://doi.org/10.1016/j.still.2019.104540 Pan Y, Cassman N, de Hollander M et al (2014) Impact of long-term N, P, K, and NPK fertilization on the composition and potential functions of the bacterial community in grassland soil. FEMS Microbiol Ecol 90:195–205. https://doi.org/10.1111/1574-6941.12384 Philippot L, Raaijmakers JM, Lemanceau P, Van Der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11:789–799. https://doi.org/10.1038/nrmicro3109 Phillips RP, Brzostek E, Midgley MG (2013) The mycorrhizal-associated nutrient economy: A new framework for predicting carbon-nutrient couplings in temperate forests. New Phytol 199:41–51. https://doi.org/10.1111/nph.12221 Pregitzer KS, DeForest JL, Burton AJ et al (2002) Fine root architecture of nine North American trees. Ecol Monogr 72:293–309. https://doi.org/10.2307/3100029 Ramette A (2007) Multivariate analyses in microbial ecology. FEMS Microbiol Ecol 62:142–160. https://doi.org/10.1111/j.1574-6941.2007.00375.x Ramirez KS, Craine JM, Fierer N (2012) Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Glob Chang Biol 18:1918–1927. https://doi.org/10.1111/j.1365-2486.2012.02639.x Ratzke C, Barrere J, Gore J (2020) Strength of species interactions determines biodiversity and stability in microbial communities. Nat Ecol Evol 4:376–383. https://doi.org/10.1038/s41559-020-1099-4 Ren B, Hu Y, Chen B et al (2018) Soil pH and plant diversity shape soil bacterial community structure in the active layer across the latitudinal gradients in continuous permafrost region of Northeastern China. Sci Rep 8:1–10. https://doi.org/10.1038/s41598-018-24040-8 Romanowicz KJ, Freedman ZB, Upchurch RA et al (2016) Active microorganisms in forest soils differ from the total community yet are shaped by the same environmental factors: the influence of pH and soil moisture. FEMS Microbiol Ecol 92:10. https://doi.org/10.1093/femsec/fiw149 Rousk J, Bååth E, Brookes PC et al (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4:1340–1351. https://doi.org/10.1038/ismej.2010.58 Sagova-Mareckova M, Omelka M, Cermak L et al (2011) Microbial communities show parallels at sites with distinct litter and soil characteristics. Appl Environ Microbiol 77:7560–7567. https://doi.org/10.1128/AEM.00527-11 Shi X, Hu HW, Wang J et al (2018) Niche separation of comammox Nitrospira and canonical ammonia oxidizers in an acidic subtropical forest soil under long-term nitrogen deposition. Soil Biol Biochem 126:114–122. https://doi.org/10.1016/j.soilbio.2018.09.004 Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Elsevier, London Sun L, Ataka M, Han M et al (2021) Root exudation as a major competitive fine-root functional trait of 18 coexisting species in a subtropical forest. New Phytol 229:259–271. https://doi.org/10.1111/nph.16865 Sun L, Ataka M, Kominami Y, Yoshimura K (2017) Relationship between fine-root exudation and respiration of two Quercus species in a Japanese temperate forest. Tree Physiol 37:1011–1020. https://doi.org/10.1093/treephys/tpx026 Sun T, Hobbie SE, Berg B et al (2018) Contrasting dynamics and trait controls in first-order root compared with leaf litter decomposition. Proc Natl Acad Sci U S A 115:10392–10397. https://doi.org/10.1073/pnas.1716595115 Tian T, Reverdy A, She Q et al (2020) The role of rhizodeposits in shaping rhizomicrobiome. Environ Microbiol Rep 12:160–172. https://doi.org/10.1111/1758-2229.12816 Treseder KK (2008) Nitrogen additions and microbial biomass: A meta-analysis of ecosystem studies. Ecol Lett 11:1111–1120. https://doi.org/10.1111/j.1461-0248.2008.01230.x Truu M, Ostonen I, Preem JK et al (2017) Elevated air humidity changes soil bacterial community structure in the silver birch stand. Front Microbiol 8:557. https://doi.org/10.3389/fmicb.2017.00557 Vogt KA, Vogt DJ, Bloomfield J (1998) Analysis of some direct and indirect methods for estimating root biomass and production of forests at an ecosystem level. Plant Soil 200:71–89. https://doi.org/10.1023/A:1004313515294 Wan X, Chen X, Huang Z, Chen HYH (2021) Contribution of root traits to variations in soil microbial biomass and community composition. Plant Soil 460:483–495. https://doi.org/10.1007/s11104-020-04788-7 Wang J, Shi X, Zheng C et al (2021) Different responses of soil bacterial and fungal communities to nitrogen deposition in a subtropical forest. Sci Total Environ 755:142449. https://doi.org/10.1016/j.scitotenv.2020.142449 Wang J, Song Y, Ma T et al (2017) Impacts of inorganic and organic fertilization treatments on bacterial and fungal communities in a paddy soil. Appl Soil Ecol 112:42–50. https://doi.org/10.1016/j.apsoil.2017.01.005 Weand MP, Arthur MA, Lovett GM et al (2010) Effects of tree species and N additions on forest floor microbial communities and extracellular enzyme activities. Soil Biol Biochem 42:2161–2173. https://doi.org/10.1016/j.soilbio.2010.08.012 Weemstra M, Mommer L, Visser EJW et al (2016) Towards a multidimensional root trait framework: a tree root review. New Phytol 211:1159–1169. https://doi.org/10.1111/nph.14003 Weigelt A, Mommer L, Andraczek K et al (2021) An integrated framework of plant form and function: the belowground perspective. New Phytol 232:42–59. https://doi.org/10.1111/nph.17590 Wen Z, Li H, Shen Q et al (2019) Tradeoffs among root morphology, exudation and mycorrhizal symbioses for phosphorus-acquisition strategies of 16 crop species. New Phytol 223:882–895. https://doi.org/10.1111/nph.15833 Williams A, Langridge H, Straathof AL et al (2021) Root functional traits explain root exudation rate and composition across a range of grassland species. J Ecol 00:1–13. https://doi.org/10.1111/1365-2745.13630 Zhang Y, Hao X, Alexander TW et al (2018) Long-term and legacy effects of manure application on soil microbial community composition. Biol Fertil Soils 54:269–283. https://doi.org/10.1007/s00374-017-1257-2 Zhang Y, Shen H, He X et al (2017) Fertilization shapes bacterial community structure by alteration of soil pH. Front Microbiol 8:1325. https://doi.org/10.3389/fmicb.2017.01325 Zhong WH, Cai ZC (2007) Long-term effects of inorganic fertilizers on microbial biomass and community functional diversity in a paddy soil derived from quaternary red clay. Appl Soil Ecol 36:84–91. https://doi.org/10.1016/j.apsoil.2006.12.001 Zhou X, Yu G, Wu F (2012) Soil phenolics in a continuously mono-cropped cucumber (Cucumis sativus L.) system and their effects on cucumber seedling growth and soil microbial communities. Eur J Soil Sci 63:332–340. https://doi.org/10.1111/j.1365-2389.2012.01442.x Zwetsloot MJ, Kessler A, Bauerle TL (2018) Phenolic root exudate and tissue compounds vary widely among temperate forest tree species and have contrasting effects on soil microbial respiration. New Phytol 218:530–541. https://doi.org/10.1111/nph.15041