Root gravitropism requires lateral root cap and epidermal cells for transport and response to a mobile auxin signal

Nature Cell Biology - Tập 7 Số 11 - Trang 1057-1065 - 2005
Ranjan Swarup1, Eric M. Kramer2, Paula Perry1, Kirsten Knox3, Ottoline Leyser3, Jim Haseloff4, Gerrit T.S. Beemster5, Rishikesh P. Bhalerao6, Malcolm J. Bennett1
1School of Biosciences, University of Nottingham, Nottingham, UK#TAB#
2Physics Department, Simon’s Rock College, Great Barrington, USA
3Department of Biology, University of York, York, UK
4Department of Plant Sciences, University of Cambridge, Cambridge, UK
5Plant Systems Biology, Flemish Institute of Biotechnology (VIB)/University of Ghent, Ghent, Belgium
6Umeå Plant Science Centre, SLU, Umeå, Sweden.

Tóm tắt

Từ khóa


Tài liệu tham khảo

Muday, G. K. Auxin and tropisms. J. Plant Growth Regul. 20, 226–243 (2001).

Moore, I. Gravitropism: Lateral thinking in auxin transport. Curr. Biol. 12, 452–454 (2002).

Boonsirichai, K, Guan, C., Chen, R. & Masson, P. H. Root gravitropism: An experimental tool to investigate basic cellular and molecular processes underlying mechanosensing and signal transmission in plants. Annu. Rev. Plant Biol. 53, 421–447 (2002).

Blancaflor, E. B. & Masson, P. H. Plant gravitropism. Unravelling the ups and downs of a complex process. Plant Physiol. 133, 1677–1690 (2003).

Morita, M. T. & Tasaka, M. Gravity sensing and signalling. Curr. Opin. Plant Biol. 7, 712–718 (2004).

Sack, F. D. Plant gravity sensing. Intl. Rev. Cytol. 127, 193–252 (1991).

Blancfluor, E. B., Fasano, J. M. & Gilroy, S. Mapping the functional roles of cap cells in the response of Arabidopsis primary roots to gravity. Plant Physiol. 116, 213–222 (1998).

Weise, S. E., Kuznetsov, O. A., Hasenstein, K. H. & Kiss, J. Z. Curvature in Arabidopsis inflorescence stems is limited to the region of amyloplast displacement. Plant Cell Physiol. 41, 702–709 (2000).

Tanaka, A., Kobayashi, Y., Hase, Y. & Watanabe, H. Positional effect of cell inactivation on root gravitropism using heavy-ion microbeams. J. Exp. Bot. 53, 683–687 (2002).

Mullen, J. L., Ishikawa, H. & Evans, M. L. Analysis of changes in relative elemental growth rate patterns in the elongation zone of Arabidopsis roots upon gravistimulation. Planta 206, 598–603 (1991).

Bennett, M. J. et al. Arabidopsis AUX1 gene: A permease-like regulator of root gravitropism. Science 273, 948–950 (1996).

Chen, R. J. et al. The Arabidopsis thaliana AGRAVITROPIC 1 gene encodes a component of the polar-auxin-transport efflux carrier. Proc. Natl Acad. Sci. USA 95, 15112–15117 (1998).

Luschnig, C., Gaxiola, R., Grisafi, P. & Fink, G. EIR1, a root specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes Dev. 12, 2175–2187 (1998).

Muller, A. et al. AtPIN2 defines a locus of Arabidopsis for root gravitropism control. EMBO J. 17, 6903–6911 (1998).

Utsuno, K., Shikanai, T., Yamada, Y. & Hashimoto, T. AGR, an agravitropic locus of Arabidopsis thaliana, encodes a novel membrane-protein family member. Plant Cell Physiol. 39, 1111–1118 (1998).

Friml, J., Wisniewska, J., Benkova, E., Mendgen, K. & Palme, K. Lateral relocation of the auxin efflux regulator AtPIN3 mediates tropism in Arabidopsis. Nature 415, 806–809 (2002).

Rouse, D., Mackay, P., Stirnberg, P., Estelle, M. & Leyser, H. M. O. Changes in auxin response from mutations in an AUX/IAA gene. Science 279, 1371–1373 (1998).

Tian, Q. & Reed, J. W. Control of auxin regulated root development by the Arabidopsis thaliana SHY2/IAA3 gene. Development 126, 711–721 (1999).

Nagpal, P. et al. AXR2 encodes a member of the Aux/IAA protein family. Plant Physiol. 123, 563–574 (2000).

Leyser, H. M. O. et al. Arabidopsis auxin-resistance gene AXR1 encodes a protein related to ubiquitin activating enzyme E1. Nature 364, 161–164 (1993).

Fasano, J. M., Massa, G. D. & Gilroy, S. Ionic signalling in plant responses to gravity and touch. J. Plant Growth Regul. 21, 71–88 (2002).

Plieth, C. & Trewavas, A. J. Reorientation of seedlings in the Earth's gravitational field induces cytosolic calcium transients. Plant Physiol. 129, 786–796 (2002).

Monshausen, G. B. & Sievers, A. Basipetal propagation of gravity-induced surface pH changes along primary roots of Lepidium sativum L. Planta 215, 980–988 (2002).

Wolverton, C., Mullen, J. L., Ishikawa, H. & Evans, M. L. Root gravitropism in response to a signal originating outside of the cap. Planta 215, 153–157 (2002).

Aloni R., Langhans M., Aloni E. & Ullrich C. I. Role of cytokinin in the regulation of root gravitropism. Planta 220, 177–182 (2004).

Hu, X. Y., Neill, S. J., Tang, Z. C. & Cai, W. M. Nitric oxide mediates gravitropic bending in soybean roots. Plant Physiol. 137, 663–670 (2005).

Rashotte, A. M., DeLong, A. & Muday, G. K. Genetic and chemical reductions in protein phosphatase activity alter auxin transport, gravity response and lateral root growth. Plant Cell 13, 1683–1697 (2001).

Boonsirichai, K., Sedbrook, J. C., Chen, R., Gilroy, S. & Masson, P. H. ALTERED RESPONSE TO GRAVITY is a peripheral membrane protein that modulates gravity-induced cytoplasmic alkalinization and lateral auxin transport in plant statocytes. Plant Cell 15, 2612–2625 (2003).

Ottenslager, I. et al. Gravity-regulated differential auxin transport from columella to lateral root cap cells. Proc. Natl Acad. Sci. USA 100, 2987–2991 (2003).

Weijers, D., van Hamburg, J.-P., van Rijn, E., Hooykaas, P. J. J. & Offringa, R. Diphtheria toxin-mediated cell ablation reveals interregional communication during Arabidopsis seed development . Plant Physiol. 133, 1882–1892 (2003).

Swarup, R. et al. Localization of the auxin permease AUX1 suggests two functionally distinct hormone transport pathways operate in the Arabidopsis root apex. Genes Dev. 15, 2648–2653 (2001).

Blilou, I. et al. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433, 39–44 (2005).

Tsurumi, S. & Ohwaki, Y. Transport of 14C-labeled indoleacetic acid in Vicia root segments. Plant Cell Physiol. 19, 1195–1206 (1978).

Friml, J., Benkova, E., Mayer, U., Palme, K. & Muster, G. Automated whole mount localisation techniques for plant seedlings. Plant J. 34, 115–124 (2003).

Kramer, E. M. PIN and AUX/LAX proteins: their role in auxin accumulation. Trends Plant Sci. 9, 578–582 (2004).

Beemster, G. & Baskins, T. Stunted Plant1 mediates effects of cytokinin, not auxin, on cell division and expansion in the root of Arabidopsis. Plant Physiol. 124, 1718–1727 (2001).

Knox, K., Grierson, C. S. & Leyser, H. M. O. AXR3 and SHY2 interact to regulate root hair development. Development 130, 5769–5777 (2003).

Tiwari, S. B., Hagen, G. & Guilfoyle, T. The role of auxin response factor domains in auxin-responsive transcription. Plant Cell 15, 533–543 (2003).

Li, H., Johnson, P., Stepanova, A., Alonso, J. M. & Ecker, J. R. Convergence of signalling pathways in the control of differential cell growth in Arabidopsis. Dev. Cell 7, 193–204 (2004).

Harper, R. M. et al. The NPH4 locus encodes the auxin response factor ARF7, a conditional regulator of differential growth in aerial Arabidopsis tissues. Plant Cell 12, 757–770 (2000).

Hardtke, C. S. & Berleth, T. The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J. 17, 1405–1411 (1998).

Konings, H. On the mechanism of tranverse distribution of auxin in geotropically exposed pea roots. Acta Bot. Neerl. 16, 161–176 (1967).

Ohwaki, Y. & Tsurumi, S. Auxin transport and growth in intact roots of Vicia faba. Plant Cell Physiol. 17, 1329–1342 (1976).

Yamamoto, M. & Yamamoto, K. Differential effects of 1-naphthalenic acid, indole-3-acetic acid and 2,4-dichlorophenoxyacetic acid on the gravitropic response of roots in an auxin resistant mutant of Arabidopsis, aux1. Plant Cell Physiol. 39, 660–664 (1998).

Marchant, A. et al. AUX1 regulates root gravitropism in Arabidopsis by facilitating auxin uptake. EMBO J. 18, 2066–2073 (1999).

Peters, W. S. & Tomos, A. D. The mechanic state of “inner tissue” in the growing zone of sunflower hypocotyls and the regulation of its growth rate following excision. Plant Physiol. 123, 605–612 (2000).

Kutschera, U. Tissue stresses in growing plant organs. Phys. Plant. 77, 157–163 (1989).

Swarup, R. et al. Structure-function analysis of the presumptive Arabidopsis auxin permease AUX1. Plant Cell 16, 3069–3083 (2004).

van der Weele, C. M. et al. A new algorithm for computational image analysis of deformable motion at high spatial and temporal resolution applied to root growth. Roughly uniform elongation in the meristem and also, after an abrupt acceleration, in the elongation zone. Plant Physiol. 132, 1138–1148 (2003).