Root associated iron oxidizing bacteria increase phosphate nutrition and influence root to shoot partitioning of iron in tolerant plant Typha angustifolia

Springer Science and Business Media LLC - Tập 381 - Trang 279-295 - 2014
Upal Das Ghosh1, Chinmay Saha2, Moumita Maiti3, Susanta Lahiri4, Sarbari Ghosh5, Anindita Seal2, Mahashweta MitraGhosh1
1Department of Microbiology, St. Xavier’s College, Kolkata, India
2Department of Biotechnology, Dr. B. C Guha Centre for Genetic Engineering and Biotechnology, Kolkata, India
3Department of Physics, IIT Roorkee, Roorkee, India
4Chemical Sciences Division, Saha Institute of Nuclear Physics, Kolkata, India
5Department of Mathematics, Vidyasagar Evening College, Kolkata, India

Tóm tắt

Typha angustifolia is a heavy metal tolerant plant that grows in a uranium mine tailings highly contaminated with iron. In this study three iron oxidizing microbes (FeOBs) isolated from Typha rhizoplane were investigated for their role in plant growth promotion (PGP). Their effect on iron nutrition in Typha under iron replete and excess condition was also evaluated. The PGP activities of the FeOBs were studied by measuring their influence on plant growth. To investigate the mechanism of growth promotion their ability to solubilize phosphate, and to produce Indole acetic acid and siderophores were studied. The influence of the FeOBs on root to shoot partitioning of iron was tested by measuring total iron content in roots and shoots treated with microbes. The FeOBs were named as Paenibacillus cookii JGR8, (MTCC12002), Pseudomonas jaduguda JGR2 (LMG25820) and Bacillus megaterium JGR9 (MTCC12001). The siderophore producers, influenced iron accumulation in the plant root. Additionally P. pseudoalcaligenes JGR2 increased shoot iron content overcoming the root- shoot barrier that allows Typha to exclude metals from its shoot. Among the PGP mechanisms tested, ability to solubilize phosphate appeared to be most significant for increasing the plant biomass. FeOBs that produce siderophore increased iron content in plant and therefore can be of immense biotechnological importance. However Biomass increase was directly correlated with increased phosphate acquisition and not with enhanced iron accumulation in Typha.

Tài liệu tham khảo

Anzai Y, Kim H, Park JY, Wakabayashi H, Oyaizu H (2000) Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol 50(Pt 4):1563–1589 Bar-Ness E, Hadar Y, Chen Y, Shanzer A, Libman J (1992) Iron uptake by plants from microbial siderophores : a study with 7-nitrobenz-2 oxa-1,3-diazole-desferrioxamine as fluorescent ferrioxamine B analog. Plant Physiol 99:1329–1335 Barriuso J, Ramos Solano B, Lucas JA, Lobo AP, García-Villaraco A, Gutiérrez Mañero FJ (2008) Ecology, genetic diversity and screening strategies of plant growth promoting rhizobacteria (PGPR). In: I Ahmad, J Pichtel, S Hayat (eds) Plant-bacteria interactions: strategies and techniques to promote plant growth. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. Chapter 1. pp 1–17 Below JF Jr, Connick RE, Coppel CP (1957) Kinetics of the formation of the ferric thiocyanate complex. J Am Chem Soc 80:2961–2967 Benardini JN, Vaishampayan PA, Schwendner P, Swanner E, Fukui Y, Osman S, Satomi M, Venkateswaran K (2011) Paenibacillus phoenicis sp. nov., isolated from the Phoenix Lander assembly facility and a subsurface molybdenum mine. Int J Syst Evol Microbiol 61:1338–1343. doi:10.1099/ijs.0.021428-0 Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486. doi:10.1016/j.tplants.2012.04.001 Bouizgarne B (2013) Bacteria for plant growth promotion and disease management. In: DK Maheshwari (ed) Bacteria in agrobiology: disease management. Springer, Berlin Heidelberg, pp 15–47 Bric JM, Bostock RM, Silverstone SE (1991) Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane. Appl Environ Microbiol 57:535–538 Brizzi M, Betti L (2010) Statistical tools for alternative research in plant experiments. Metodološki Zvezki 7:59–71 Bulgarelli D, Schlaeppi K, Spaepen S, Loren V, van Themaat E, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838. doi:10.1146/annurev-arplant-050312-120106 Cappucino JG, Sherman N (2004) Microcbiology: a laboratory manual. Pearson Education. 6th Edition, pp 319–321 Chakraborty D, Abhay Kumar S, Sen M, Apte SK, Das S, Acharya R, Das T, Reddy AVR, Roychaudhury S, Rajaram H, Seal A (2011) Manganese and iron both influence the shoot transcriptome of Typha angustifolia despite distinct preference towards manganese accumulation. Plant Soil 342:301–317 Charest MH, Beauchamp CJ, Antoun H (2005) Effects of the humic substances of de-inking paper sludge on the antagonism between two compost bacteria and Pythium ultimum. FEMS Microbiol Ecol 52:219–227. doi:10.1016/j.Femsec.2004.11.017 Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41. doi:10.1016/j.apsoil.2005.12.002 Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low nutrient environments. Plant Soil 245:35–47 de Souza MP, Chu D, Zhao M, Zayed AM, Ruzin SE, Schichnes D, Terry N (1999) Rhizosphere bacteria enhance selenium accumulation and volatilization by Indian mustard. Plant Physiol 119:565–574 Dethier Rogers S, Beech J, Sarma KS (1998) Shoot regeneration and plant acclimatization of the wetland monocot Cattail (Typha latifolia). Plant Cell Rep 18:71–75 Devaiah BN, Madhuvanthi R, Karthikeyan AS, Raghothama KG (2009) Phosphate starvation responses and gibberellic acid biosynthesis are regulated by the MYB62 transcription factor in Arabidopsis. Mol Plant 2:43–58. doi:10.1093/mp/ssn081 Dimkpa CO, Svatos A, Dabrowska P, Schmidt A, Boland W, Kothe E (2008) Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces spp. Chemosphere 74:19–25. doi:10.1016/j.chemosphere.2008.09.079 Emerson D, Moyer C (1997) Isolation and characterization of novel iron oxidizing bacteria that grow at circumneutral pH. Appl Environ Microbiol 63:4784–4792 Figueiredo MVB, Seldin L, Araujo F, Mariano RLR (2010) Plant growth promoting rhizobacteria: fundamentals and applications plant growth and health promoting bacteria. In: DK Maheshwari (ed) Plant growth and health promoting bacteria, vol 18. Springer, Berlin Heidelberg, pp 21–43 García JL, Probanza A, Ramos B, Mañero FJG (2001) Ecology, genetic diversity and screening strategies of plant growth promoting rhizobacteria. J Plant Nutr Soil Sci 164:1–7 Gerhardt P, Murray RGE, Wood WA, Krieg NR (1994) Methods for general and molecular bacteriology. American Society for Microbiology, Washington Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21:383–393. doi:10.1016/s0734-9750(03)00055-7 Glickmann E, Dessaux Y (1995) A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl Environ Microbiol 61:793–796 Grandlic CJ, Mendez MO, Chorover J, Machado B, Maier RM (2008) Plant growth-promoting bacteria for phytostabilization of mine tailings. Environ Sci Technol 42:2079–2084 Grebe M (2011) Plant biology: unveiling the Casparian strip. Nature 473:294–295. doi:10.1038/473294a Guang-Can, Shu-Jun, Miao-Ying, Guang-Hui (2008) Phosphate-solubilizing and -mineralizing abilities of bacteria isolated from soils. Pedosphere 18:515–523 Gupta A, Gopal M, Tilak KV (2000) Mechanism of plant growth promotion by rhizobacteria. Indian J Exp Biol 38:856–862 Gutiérrez Mañero FJ, Probanza A, Ramos B, Colón Flores JJ, Lucas García JA (2003) Ecology, genetic diversity and screening strategies of plant growth promoting rhizobacteria (PGPR). J Plant Nutr 26:1101–1115 Hameeda B, Harini G, Rupela OP, Wani SP, Reddy G (2008) Growth promotion of maize by phosphate-solubilizing bacteria isolated from composts and macrofauna. Microbiol Res 163:234–242. doi:10.1016/j.micres.2006.05.009 Hanert HH (2006) The genus siderocapsa and other iron and manganese oxidizing eubacteria. Prokaryotes 7:1005–1015. doi:10.1007/0-387-30747-8_50 Hiltner L (1904) Uber neuere erfahrungen und probleme auf dem gebiet der boden sbakteriologie und unter besonderer berucksichtigung det grundungung und branche. Arb Deut Landw Ges 98:59–78 Hrynkiewicz K, Baum C (2012) The potential of rhizosphere microorganisms to promote the plant growth in disturbed soils. In: A Malik, E Grohmann (eds) Environmental protection strategies for sustainable development. Springer, Netherlands, pp 35–64 Illmer P, Barbato A, Schinner F (1995) Solubilization of hardly-soluble AlPO4 with P-solubilizing microorganisms. Soil Biol Biochem 27:265–270 Joseph B, Ranjan Patra R, Lawrence R (2007) Characterization of plant growth promoting rhizobacteria associated with chickpea (Cicer arietinum L.). Int J Plant Prod 1:141–152 Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: HN Munro (ed) Mammalian protein metabolism, vol 3. Academic Press, Inc., New York, pp 21–132 Kappler A, Straub KL (2005) Geomicrobiological cycling of iron. Rev Mineral Geochem 59:85–108 Kaymak HC, Yarali F, Guvenc I, Donmez MF (2008) The effect of inoculation with plant growth Rhizobacteria (PGPR) on root formation of mint (Mentha piperita L) cuttings. Afr J Biotechnol 7:4479–4483 Kovacs G, Burghardt J, Pradella S, Schumann P, Stackebrandt E, Marialigeti K (1999) Kocuria palustris sp. nov. and Kocuria rhizophila sp. nov., isolated from the rhizoplane of the narrow-leaved cattail (Typha angustifolia). Int J Syst Bacteriol 49(Pt 1):167–173 McLaughlin BE, Van Loon GW, Crowder AA (1985) Comparison of selected washing treatments on Agrostis gigantea samples from mine tailings near Copper Cliff, Ontario, before analysis for Cu, Ni, Fe and K content. Plant Soil 85:433–436 Naseer S, Lee Y, Lapierre C, Franke R, Nawrath C, Geldner N (2012) Casparian strip diffusion barrier in Arabidopsis is made of a lignin polymer without suberin. Proc Natl Acad Sci U S A 109:10101–10106. doi:10.1073/pnas.1205726109 Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JD (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439. doi:10.1126/science.1126088 Perez-Miranda S, Cabirol N, George-Tellez R, Zamudio-Rivera LS, Fernandez FJ (2007) O-CAS, a fast and universal method for siderophore detection. J Microbiol Meth 70:127–131. doi:10.1016/j.mimet.2007.03.023 Perez-Torres CA, Lopez-Bucio J, Cruz-Ramirez A, Ibarra-Laclette E, Dharmasiri S, Estelle M, Herrera-Estrella L (2008) Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor. Plant Cell 20:3258–3272. doi:10.1105/tpc.108.058719 Probanza A, Lucas Garca JA, Ruiz Palomino M, Ramos B, Gutierrez Manero FJ (2002) Pinus pinea L. seedling growth and bacterial rhizosphere structure after inoculation with PGPR Bacillus (B. licheniformis CECT 5106 and B. pumilus CECT 5105). Appl Soil Ecol 20(2):75–84, (10) 20: 75–84 Rajkumar M, Ae N, Prasad MN, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149. doi:10.1016/j.tibtech.2009.12.002 Richardson AE, Simpson RJ (2011) Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiol 156:989–996. doi:10.1104/pp.111.175448 Rooney AP, Price NP, Ehrhardt C, Swezey JL, Bannan JD (2009) Phylogeny and molecular taxonomy of the Bacillus subtilis species complex and description of Bacillus subtilis subsp. inaquosorum subsp. nov. Int J Syst Evol Microbiol 59:2429–2436. doi:10.1099/ijs.0.009126-0 Saharan BS, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res 2011:1–30 Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425 Sato A, Miura K (2011) Root architecture remodeling induced by phosphate starvation. Plant Signal Behav 6:1122–1126. doi:10.4161/psb.6.8.15752 Schachtman DP, Reid RJ, Ayling SM (1998) Phosphorus uptake by plants: from soil to cell. Plant Physiol 116:447–453 Scheldeman P, Goossens K, Rodriguez-Diaz M, Pil A, Goris J, Herman L, De Vos P, Logan NA, Heyndrickx M (2004) Paenibacillus lactis sp. nov., isolated from raw and heat-treated milk. Int J Syst Evol Microbiol 54:885–891 Sepe A, Barbieri P, Peduzzi R, Demarta A (2008) Evaluation of recA sequencing for the classification of Aeromonas strains at the genotype level. Lett Appl Microbiol 46:439–444. doi:10.1111/j.1472-765X.2008.02339.x Sinha S, Mukherjee SK (2008) Cadmium-induced siderophore production by a high Cd-resistant bacterial strain relieved Cd toxicity in plants through root colonization. Curr Microbiol 56:55–60. doi:10.1007/s00284-007-9038-z Taylor GJ, Crowder AA (1983) Use of the DCB technique for extraction of hydrous iron oxides from roots of wetland plants. Am J Bot 70:1254–1257 Timmusk S, van West P, Gow NA, Huffstutler RP (2009) Paenibacillus polymyxa antagonizes oomycete plant pathogens Phytophthora palmivora and Pythium aphanidermatum. J Appl Microbiol 106:1473–1481. doi:10.1111/j.1365-2672.2009.04123.x Varvel GE, Peterson GA, Anderson FN (1991) A revised method for determining phosphate-phosphorus levels in sugar beet leaf petioles. J ASS BT 19:138–142 Vyas P, Gulati A (2009) Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiol 9:174. doi:10.1186/1471-2180-9-174 Xin YH, Zhang DC, Liu HC, Zhou HL, Zhou YG (2009) Pseudomonas tuomuerensis sp. nov., isolated from a bird’s nest. Int J Syst Evol Microbiol 59:139–143. doi:10.1099/ijs.0.000547-0