Rolling Manifolds of Different Dimensions

Acta Applicandae Mathematicae - Tập 139 - Trang 105-131 - 2014
Amina Mortada1,2, Petri Kokkonen3, Yacine Chitour4
1CNRS and STITS, Université Paris-Sud 11, Gif-sur-Yvette, France
2EDST, Université Libanaise, Hadath, Liban
3Helsinki, Finland
4CNRS and Supélec, Université Paris-Sud 11, Gif-sur-Yvette, France

Tóm tắt

If (M,g) and $(\hat{M},\hat{g})$ are two smooth connected complete oriented Riemannian manifolds of dimensions n and $\hat{n}$ respectively, we model the rolling of (M,g) onto $(\hat{M},\hat{g})$ as a driftless control affine systems describing two possible constraints of motion: the first rolling motion (Σ) NS captures the no-spinning condition only and the second rolling motion (Σ) R corresponds to rolling without spinning nor slipping. Two distributions of dimensions $(n + \hat{n})$ and n are then associated to the rolling motions (Σ) NS and (Σ) R respectively. This generalizes the rolling problems considered in Chitour and Kokkonen (Rolling manifolds and controllability: the 3D case, 2012) where both manifolds had the same dimension. The controllability issue is then addressed for both (Σ) NS and (Σ) R and completely solved for (Σ) NS . As regards to (Σ) R , basic properties for the reachable sets are provided as well as the complete study of the case $(n,\hat{n})=(3,2)$ and some sufficient conditions for non-controllability.

Tài liệu tham khảo

Agrachev, A., Sachkov, Y.: An intrinsic approach to the control of rolling bodies. In: Proceedings of the CDC, Phoenix, vol. I, pp. 431–435 (1999) Agrachev, A., Sachkov, Y.: Control Theory from the Geometric Viewpoint. Encyclopaedia of Mathematical Sciences, vol. 87. Control Theory and Optimization, II. Springer, Berlin (2004) Alouges, F., Chitour, Y., Long, R.: A motion planning algorithm for the rolling-body problem. IEEE Trans. Robot. 26(5), 827–836 (2010) Bryant, R., Hsu, L.: Rigidity of integral curves of rank 2 distributions. Invent. Math. 114(2), 435–461 (1993) Chelouah, A., Chitour, Y.: On the controllability and trajectories generation of rolling surfaces. Forum Math. 15, 727–758 (2003) Chitour, Y., Godoy Molina, M., Kokkonen, P.: The rolling problem: overview and challenges (2013). arXiv:1301.6370 Chitour, Y., Godoy Molina, M., Kokkonen, P.: Symmetries of the rolling model (2013). arXiv:1301.2579 Chitour, Y., Kokkonen, P.: Rolling manifolds: intrinsic formulation and controllability. Preprint (2011). arXiv:1011.2925v2 Chitour, Y., Kokkonen, P.: Rolling manifolds and controllability: the 3D case. Submitted (2012) Jean, F.: Control of Nonholonomic Systems: From Sub-Riemannian Geometry to Motion Planning. Springer, Berlin (2014) Jurdjevic, V.: Geometric Control Theory. Cambridge Studies in Advanced Mathematics, vol. 52. Cambridge University Press, Cambridge (1997) Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, vol. I. Wiley-Interscience, New York (1996) Kokkonen, P.: A characterization of isometries between Riemannian manifolds by using development along geodesic triangles. Arch. Math. 48(3), 207–231 (2012) Kokkonen, P.: Étude du modèle des variétés roulantes et de sa commandabilité. Ph.D. Thesis (2012). http://tel.archives-ouvertes.fr/tel-00764158 Marigo, A., Bicchi, A.: Rolling bodies with regular surface: controllability theory and applications. IEEE Trans. Autom. Control 45(9), 1586–1599 (2000) Marigo, A., Bicchi, A.: Planning motions of polyhedral parts by rolling, algorithmic foundations of robotics. Algorithmica 26(3–4), 560–576 (2000) Molina, M., Grong, E., Markina, I., Leite, F.: An intrinsic formulation of the problem of rolling manifolds. J. Dyn. Control Syst. 18(2), 181–214 (2012) Sakai, T.: Riemannian Geometry. Translations of Mathematical Monographs, vol. 149. Am. Math. Soc., Providence (1996) Sharpe, R.W.: Differential Geometry: Cartan’s Generalization of Klein’s Erlangen Program. Graduate Texts in Mathematics, vol. 166. Springer, New York (1997) Vilms, J.: Totally geodesic maps. J. Differ. Geom. 4, 73–79 (1970)