Role of Mac‐1 integrin in generation of extracellular vesicles with antibacterial capacity from neutrophilic granulocytes

Journal of extracellular vesicles - Tập 9 Số 1 - 2020
Ákos M. Lőrincz1, Balázs Bartos1, Dávid Szombath1, Viktòria Szeifert1, Csaba I. Tímár1, Lilla Turiák2, László Drahos2, Ágnes Kittel3, Dániel Sándor Veres4, Ferenc Kolonics1, Attila Mócsai1, Erzsébet Ligeti1
1Department of Physiology, Semmelweis University, Budapest, Hungary
2MS Proteomics Research Group, Research Centre for Natural Science, Hungarian Academy of Sciences, Budapest, Hungary
3Experimental Research Institute of Hungarian Academy of Sciences, Budapest, Hungary
4Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary

Tóm tắt

ABSTRACT

Production of extracellular vesicles (EVs) involved in intercellular communication is a common capacity of most cell types. Upon encountering opsonized microorganisms, neutrophilic granulocytes release EVs that compromise bacterial growth. We carried out a systematic investigation of the involvement of potential opsonin receptors in EV‐generation from human and murine neutrophils. Applying flow cytometric, proteomic and functional analysis as well as using genetically modified mice, we demonstrate that formation of antibacterial EVs depends upon stimulation of the multifunctional Mac‐1 integrin complex, also called as complement receptor 3 (CR3), whereas activation of immunoglobulin binding Fc receptors or pattern recognition receptors alone or in combination is ineffective. Mac‐1/CR3 stimulation and downstream tyrosine kinase signalling affect both the numbers, the cargo content and the antibacterial capacity of the produced vesicles. In contrast, Mac‐1/CR3 signalling is not required for spontaneous EV formation, clearly indicating the existence of separate molecular pathways in EV biogenesis. We propose that EVs are “tailor‐made” with different composition and functional properties depending on the environmental circumstances.

Từ khóa


Tài liệu tham khảo

10.1146/annurev-cellbio-101512-122326

10.1007/s00281-018-0681-1

10.1038/nri3622

10.1083/jcb.201211138

10.3402/jev.v4.27066

10.1007/s00018-011-0689-3

10.1073/pnas.1521230113

10.1007/s00018-017-2595-9

10.1016/j.ceb.2014.05.004

10.1111/tra.12558

10.1189/jlb.0911480

10.4049/jimmunol.1600614

10.3402/jev.v1i0.18364

10.1074/mcp.M113.028589

10.1007/s00424-016-1926-2

10.1074/jbc.M115.698639

10.1002/JLB.4TA0817-317R

10.1182/blood-2012-05-431114

10.1371/journal.ppat.1003529

10.1182/blood.V95.3.930.003k46_930_935

10.1039/C5NR01851J

10.1189/jlb.3VMA1014-514R

10.1084/jem.188.1.119

10.1073/pnas.0401602101

10.1002/art.27438

10.3402/jev.v3.25465

10.1016/j.molimm.2016.02.011

10.4049/jimmunol.180.1.618

10.1182/blood-2004-03-1005

10.4049/jimmunol.1401624

10.1084/jem.158.6.1785

10.1084/jem.158.2.586

10.1084/jem.154.5.1517

Fleming TJ, 1993, Selective expression of Ly‐6G on myeloid lineage cells in mouse bone marrow. RB6‐8C5 mAb to granulocyte‐differentiation antigen (Gr‐1) detects members of the Ly‐6 family, J Iimmunol, 151, 2399, 10.4049/jimmunol.151.5.2399

10.1111/j.1538-7836.2012.04683.x

10.1080/20013078.2018.1535750

Monguio‐Tortajada M, 2019, Extracellular‐vesicle isolation from different biological fluids by size‐exclusion chromatography, Curr Protoc Stem Cell Biol, e82, 10.1002/cpsc.82

10.1038/nmeth.2089

10.1371/journal.pone.0014081

10.1016/j.jprot.2011.05.023

10.1002/pmic.201500260

10.1038/nbt.1511

10.1007/s00424-013-1285-1

10.1016/j.semcdb.2017.11.025

10.1016/j.intimp.2013.06.034

10.1172/JCI113643

10.1038/nri2765

10.1182/blood-2011-07-369041

10.1182/blood-2010-09-307595

10.4049/jimmunol.163.9.5029

10.1016/j.chom.2011.10.009

10.1172/JCI119293

10.4049/jimmunol.166.12.7362

Sengelov H, 1993, Control of exocytosis in early neutrophil activation, J Immunol, 150, 1535, 10.4049/jimmunol.150.4.1535

10.1161/CIRCRESAHA.111.257980

10.1038/s41467-018-02896-8