Vai trò của AmpG trong sự kháng lại các tác nhân β-lactam, bao gồm cephalosporin và carbapenem: ứng cử viên cho một mục tiêu kháng khuẩn mới

Roshan D’Souza1, Le Phuong Anh Nguyen1, Naina Adren Pinto2, Hyun‐Sook Lee1, Thao Nguyen Vu1, Ho-Young Kim3, Hyun Soo Cho3, Dongeun Yong1
1Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
2Brain Korea 21 Project for Medical Science, Yonsei University, Seoul, Korea
3Department of Systems Biology, Yonsei University, Seoul, Korea

Tóm tắt

Tóm tắt Đặt vấn đề

Một chuỗi phức tạp các gen, enzyme và yếu tố phiên mã điều chỉnh sự biểu hiện quá mức của AmpC β-lactamase. Chúng tôi đã điều tra mạng lưới biểu hiện quá mức của AmpC β-lactamase ở Klebsiella aerogenes và xác định vai trò của AmpG trong sự kháng lại các tác nhân β-lactam, bao gồm cả cephalosporin và carbapenem.

Phương pháp

Một thư viện đột biến transposon đã được tạo ra cho K. aerogenes kháng carbapenem YMC2008-M09-943034 (KE-Y1) nhằm sàng lọc các ứng cử viên có độ nhạy tăng lên với carbapenem, từ đó xác định được các biến thể đột biến nhạy cảm KE-Y3 và KE-Y6. Tất cả các dòng này đã được tiến hành lắp ghép de novo liên tục qua PacBio sequencing để điều tra sự mất khả năng kháng do sự chèn transposon. Các thí nghiệm bổ sung và loại bỏ gen đã được thực hiện bằng phương pháp tái tổ hợp đồng dạng được trung gian bởi lambda Red và CRISPR–Cas9 để xác nhận vai trò của gen quan tâm.

Kết quả

Phân tích chi tiết KE-Y3 và KE-Y6 cho thấy sự chèn transposon tại sáu vị trí ở mỗi dòng, tại đó sự cắt ngắn của gen AmpG permease có ở cả hai. Sự gián đoạn của AmpG permease dẫn đến khả năng nhạy cảm với carbapenem, điều này đã được xác nhận thêm qua thí nghiệm bổ sung. Chúng tôi đã tạo ra một đột biến gene AmpG permease bằng cách sử dụng tái tổ hợp trung gian lambda Red ở K. aerogenes KE-Y1 và một đột biến gene bằng CRISPR–Cas9 ở Klebsiella pneumoniae-YMC/2013/D để chuyển nhượng khả năng nhạy cảm với carbapenem.

Kết luận

Các phát hiện này gợi ý rằng việc ức chế AmpG là một chiến lược tiềm năng để tăng cường hiệu quả của các tác nhân β-lactam chống lại Klebsiella aerogenes.

Từ khóa


Tài liệu tham khảo

Mouloudi E, Protonotariou E, Zagorianou A, Iosifidis E, Karapanagiotou A, Giasnetsova T, et al. Bloodstream infections caused by Metallo-β-Lactamase/Klebsiella pneumoniae Carbapenemase-Producing K pneumoniae among intensive care unit patients in greece: risk factors for infection and impact of type of resistance on outcomes. Infect Contr Hosp Epidemiol. 2010;31(12):1250–6.

Perl TM, Dvorak L, Hwang T, Wenzel RP. Long-term survival and function after suspected gram-negative sepsis. JAMA. 1995;274(4):338–45.

Mehrad B, Clark NM, Zhanel GG, Lynch JP 3rd. Antimicrobial resistance in hospital-acquired gram-negative bacterial infections. Chest. 2015;147(5):1413–21.

Golan Y. Empiric therapy for hospital-acquired, Gram-negative complicated intra-abdominal infection and complicated urinary tract infections: a systematic literature review of current and emerging treatment options. BMC Infect Dis. 2015;15(1):1–7.

Donskey CJ. Antibiotic regimens and intestinal colonization with antibiotic-resistant gram-negative bacilli. Clin Infect Dis. 2006;43(Suppl 2):S62–9.

Todar K. Todar's Online Textbook of Bacteriology 2004. Available from: http://textbookofbacteriology.net/normalflora_3.html.

Diene SM, Merhej V, Henry M, El Filali A, Roux V, Robert C, et al. The rhizome of the multidrug-resistant Enterobacter aerogenes genome reveals how new “killer bugs” are created because of a sympatric lifestyle. Mol Biol Evol. 2013;30(2):369–83.

Davin-Regli A, Pages JM. Enterobacter aerogenes and Enterobacter cloacae; versatile bacterial pathogens confronting antibiotic treatment. Front Microbiol. 2015;6:392.

Arpin C, Coze C, Rogues AM, Gachie JP, Bebear C, Quentin C. Epidemiological study of an outbreak due to multidrug-resistant Enterobacter aerogenes in a medical intensive care unit. J Clin Microbiol. 1996;34(9):2163–9.

Jacoby GA. AmpC beta-lactamases. Clin Microbiol Rev. 2009;22(1):161–82.

Siedner MJ, Galar A, Guzman-Suarez BB, Kubiak DW, Baghdady N, Ferraro MJ, et al. Cefepime vs other antibacterial agents for the treatment of Enterobacter species bacteremia. Clin Infect Dis. 2014;58(11):1554–63.

Kuga A, Okamoto R, Inoue M. ampR gene mutations that greatly increase class C beta-lactamase activity in Enterobacter cloacae. Antimicrob Agents Chemother. 2000;44(3):561–7.

Schmidtke AJ, Hanson ND. Model system to evaluate the effect of ampD mutations on AmpC-mediated beta-lactam resistance. Antimicrob Agents Chemother. 2006;50(6):2030–7.

Pyne ME, Moo-Young M, Chung DA, Chou CP. Coupling the CRISPR/Cas9 system with lambda red recombineering enables simplified chromosomal gene replacement in Escherichia coli. Appl Environ Microbiol. 2015;81(15):5103–14.

Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983;166(4):557–80.

Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics. 2008;9:75.

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28(12):1647–9.

Roy A, Kucukural A, Zhang Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc. 2010;5(4):725–38.

Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol. 2013;31(3):233–9.

Aranda J, Poza M, Pardo BG, Rumbo S, Rumbo C, Parreira JR, et al. A rapid and simple method for constructing stable mutants of Acinetobacter baumannii. BMC Microbiol. 2010;10:279.

Darling AE, Mau B, Perna NT. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE. 2010;5(6):e11147.

Li P, Ying J, Yang G, Li A, Wang J, Lu J, et al. Structure-function analysis of the transmembrane protein AmpG from Pseudomonas aeruginosa. PLoS ONE. 2016;11(12):e0168060.

Livermore DM. beta-Lactamases in laboratory and clinical resistance. Clin Microbiol Rev. 1995;8(4):557–84.

Normark S. beta-Lactamase induction in gram-negative bacteria is intimately linked to peptidoglycan recycling. Microb Drug Resist. 1995;1(2):111–4.

Chahboune A, Decaffmeyer M, Brasseur R, Joris B. Membrane topology of the Escherichia coli AmpG permease required for recycling of cell wall anhydromuropeptides and AmpC beta-lactamase induction. Antimicrob Agents Chemother. 2005;49(3):1145–9.

Korfmann G, Sanders CC. ampG is essential for high-level expression of AmpC beta-lactamase in Enterobacter cloacae. Antimicrob Agents Chemother. 1989;33(11):1946–51.

Holtje JV, Kopp U, Ursinus A, Wiedemann B. The negative regulator of beta-lactamase induction AmpD is a N-acetyl-anhydromuramyl-L-alanine amidase. FEMS Microbiol Lett. 1994;122(1–2):159–64.

Lee M, Zhang W, Hesek D, Noll BC, Boggess B, Mobashery S. Bacterial AmpD at the crossroads of peptidoglycan recycling and manifestation of antibiotic resistance. J Am Chem Soc. 2009;131(25):8742–3.

Lindquist S, Galleni M, Lindberg F, Normark S. Signalling proteins in enterobacterial AmpC beta-lactamase regulation. Mol Microbiol. 1989;3(8):1091–102.

Kong KF, Schneper L, Mathee K. Beta-lactam antibiotics: from antibiosis to resistance and bacteriology. APMIS. 2010;118(1):1–36.

Park JT. Identification of a dedicated recycling pathway for anhydro-N-acetylmuramic acid and N-acetylglucosamine derived from Escherichia coli cell wall murein. J Bacteriol. 2001;183(13):3842–7.

Honore N, Nicolas MH, Cole ST. Inducible cephalosporinase production in clinical isolates of Enterobacter cloacae is controlled by a regulatory gene that has been deleted from Escherichia coli. EMBO J. 1986;5(13):3709–14.

Nicolas MH, Honore N, Jarlier V, Philippon A, Cole ST. Molecular genetic analysis of cephalosporinase production and its role in beta-lactam resistance in clinical isolates of Enterobacter cloacae. Antimicrob Agents Chemother. 1987;31(2):295–9.

Zamorano L, Reeve TM, Juan C, Moya B, Cabot G, Vocadlo DJ, et al. AmpG inactivation restores susceptibility of pan-beta-lactam-resistant Pseudomonas aeruginosa clinical strains. Antimicrob Agents Chemother. 2011;55(5):1990–6.