Role of Adult Tissue-Derived Pluripotent Stem Cells in Bone Regeneration

Stem Cell Reviews and Reports - Tập 16 - Trang 198-211 - 2019
Liudmila Leppik1, K. Sielatycka2, D. Henrich3, Z. Han1, H. Wang1, M. J. Eischen-Loges1, K. M. C. Oliveira1, M. B. Bhavsar1, M. Z. Ratajczak4, J. H. Barker1
1Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics & Trauma Surgery, J.W. Goethe University, Frankfurt am Main, Germany
2Institute of Biology, Faculty of Exact and Natural Science, University of Szczecin, Szczecin, Poland
3Department of Trauma, Hand & Reconstructive Surgery, J.W. Goethe University, Frankfurt/Main, Germany
4Stem Cell Institute at the James Graham Brown Cancer Center, University of Louisville, Louisville, USA

Tóm tắt

Bone marrow-derived mononuclear cells (BM-MNC) consist of a heterogeneous mix of mesenchymal stem cells (MSC), hematopoietic progenitor cells (HPC), endothelial progenitor cells (EPC), monocytes, lymphocytes and pluripotent stem cells. Whereas the importance of MSC and EPC has been well documented in bone healing and regeneration studies, the role of pluripotent stem cells is still poorly understood. In the present study we evaluated if and how Very Small Embryonic Like cells (VSEL), isolated from rat BM-MNC, contribute to bone healing. Large bone defects were made in the femurs of 38 Sprague Dawley female rats and treated with β-TCP scaffold granules seeded with male VSEL; BM-MNC, VSEL-depleted BM-MNC or scaffold alone, and bone healing was evaluated at 8 weeks post-surgery. Bone healing was significantly increased in defects treated with VSEL and BM-MNC, compared to defects treated with VSEL-depleted BM-MNC. Donor cells were detected in new bone tissue, in all the defects treated with cells, and in fibrous tissue only in defects treated with VSEL-depleted BM-MNC. The number of CD68+ cells was the highest in the VSEL-depleted group, whereas the number of TRAP positive cells was the lowest in this group. Based on the results, we can conclude that VSEL play a role in BM-MNC induced bone formation. In our rat femur defect model, in defects treated with VSEL-depleted BM-MNC, osteoclastogenesis and bone formation were decreased, and foreign body reaction was increased.

Tài liệu tham khảo

Pape, H. C., Evans, A., & Kobbe, P. (2010). Autologous bone graft: properties and techniques. Journal of Orthopaedic Trauma, 24(Suppl 1), S36–S40. https://doi.org/10.1097/BOT.0b013e3181cec4a1. Dimitriou, R., Mataliotakis, G. I., Angoules, A. G., et al. (2011). Complications following autologous bone graft harvesting from the iliac crest and using the RIA: A systematic review. Injury, 42(Suppl 2), S3–S15. https://doi.org/10.1016/j.injury.2011.06.015. Seebach, C., Henrich, D., Meier, S., Nau, C., Bonig, H., & Marzi, I. (2016). Safety and feasibility of cell-based therapy of autologous bone marrow-derived mononuclear cells in plate-stabilized proximal humeral fractures in humans. Journal of Translational Medicine, 14(1), 314. https://doi.org/10.1186/s12967-016-1066-7. Verboket, R., Leiblein, M., Seebach, C., Nau, C., Janko, M., Bellen, M., Bönig, H., Henrich, D., & Marzi, I. (2018). Autologous cell-based therapy for treatment of large bone defects: From bench to bedside. European Journal of Trauma and Emergency Surgery, 44(5), 649–665. https://doi.org/10.1007/s00068-018-0906-y. Ratajczak, M. Z., Zuba-Surma, E. K., Machalinski, B., Ratajczak, J., & Kucia, M. (2008). Very small embryonic-like (VSEL) stem cells: Purification from adult organs, characterization, and biological significance. Stem Cell Reviews, 4(2), 89–99. https://doi.org/10.1007/s12015-008-9018-0. Vacanti, M. P., Roy, A., Cortiella, J., Bonassar, L., & Vacanti, C. A. (2001). Identification and initial characterization of spore-like cells in adult mammals. Journal of Cellular Biochemistry, 80(3), 455–460. Beltrami, A. P., Cesselli, D., Bergamin, N., et al. (2007). Multipotent cells can be generated in vitro from several adult human organs (heart, liver, and bone marrow). Blood, 110(9), 3438–3446. https://doi.org/10.1182/blood-2006-11-055566. Wakao, S., Kitada, M., Kuroda, Y., et al. (2011). Multilineage-differentiating stress-enduring (muse) cells are a primary source of induced pluripotent stem cells in human fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 108(24), 9875–9880. https://doi.org/10.1073/pnas.1100816108. Jiang, Y., Jahagirdar, B. N., Reinhardt, R. L., Schwartz, R. E., Keene, C. D., Ortiz-Gonzalez, X. R., Reyes, M., Lenvik, T., Lund, T., Blackstad, M., du, J., Aldrich, S., Lisberg, A., Low, W. C., Largaespada, D. A., & Verfaillie, C. M. (2002). Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 418(6893), 41–49. https://doi.org/10.1038/nature00870. Kucia, M., Reca, R., Campbell, F. R., et al. (2006). A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4+ stem cells identified in adult bone marrow. Leukemia, 20(5), 857–869. https://doi.org/10.1038/sj.leu.2404171. Ratajczak, M. Z., Marycz, K., Poniewierska-Baran, A., Fiedorowicz, K., Zbucka-Kretowska, M., & Moniuszko, M. (2014). Very small embryonic-like stem cells as a novel developmental concept and the hierarchy of the stem cell compartment. Advances in Medical Sciences, 59(2), 273–280. https://doi.org/10.1016/j.advms.2014.08.001. Zuba-Surma, E. K., Kucia, M., Wu, W., Klich, I., Lillard JW Jr, Ratajczak, J., & Ratajczak, M. Z. (2008). Very small embryonic-like stem cells are present in adult murine organs: ImageStream-based morphological analysis and distribution studies. Cytometry. Part A, 73A(12), 1116–1127. https://doi.org/10.1002/cyto.a.20667. Havens, A. M., Sun, H., Shiozawa, Y., Jung, Y., Wang, J., Mishra, A., Jiang, Y., O'Neill, D. W., Krebsbach, P. H., Rodgerson, D. O., & Taichman, R. S. (2014). Human and murine very small embryonic-like cells represent multipotent tissue progenitors, in vitro and in vivo. Stem Cells and Development, 23(7), 689–701. https://doi.org/10.1089/scd.2013.0362. Havens, A. M., Shiozawa, Y., Jung, Y., Sun, H., Wang, J., McGee, S., Mishra, A., Taichman, L. S., Danciu, T., Jiang, Y., Yavanian, G., Leary, E., Krebsbach, P. H., Rodgerson, D., & Taichman, R. S. (2013). Human very small embryonic-like cells generate skeletal structures, in vivo. Stem Cells and Development, 22(4), 622–630. https://doi.org/10.1089/scd.2012.0327. Kim, Y., Jeong, J., Kang, H., et al. (2014). The molecular nature of very small embryonic-like stem cells in adult tissues. International Journal of Stem Cells, 7(2), 55–62. https://doi.org/10.15283/ijsc.2014.7.2.55. Guerin, C. L., Blandinières, A., Planquette, B., Silvestre, J. S., Israel-Biet, D., Sanchez, O., & Smadja, D. M. (2017). Very small embryonic-like stem cells are mobilized in human peripheral blood during hypoxemic COPD exacerbations and pulmonary hypertension. Stem Cell Reviews and Reports, 13(4), 561–566. https://doi.org/10.1007/s12015-017-9732-6. Eljaszewicz, A., Kleina, K., Grubczak, K., Radzikowska, U., Zembko, P., Kaczmarczyk, P., Tynecka, M., Dworzanczyk, K., Naumnik, B., & Moniuszko, M. (2018). Elevated numbers of circulating very small embryonic-like stem cells (VSELs) and intermediate CD14++CD16+ monocytes in IgA nephropathy. Stem Cell Reviews and Reports, 14(5), 686–693. https://doi.org/10.1007/s12015-018-9840-y. Golipoor, Z., Mehraein, F., Zafari, F., Alizadeh, A., Ababzadeh, S., & Baazm, M. (2016). Migration of bone marrow-derived very small embryonic-like stem cells toward an injured spinal cord. Cell Journal, 17(4), 639–647. Bhartiya, D., Ali Mohammad, S., Guha, A., Singh, P., Sharma, D., & Kaushik, A. (2019). Evolving definition of adult stem/progenitor cells. Stem Cell Reviews and Reports, 15(3), 456–458. https://doi.org/10.1007/s12015-019-09879-2. Sovalat, H., Scrofani, M., Eidenschenk, A., Pasquet, S., Rimelen, V., & Hénon, P. (2011). Identification and isolation from either adult human bone marrow or G-CSF-mobilized peripheral blood of CD34(+)/CD133(+)/CXCR4(+)/ Lin(−)CD45(−) cells, featuring morphological, molecular, and phenotypic characteristics of very small embryonic-like (VSEL) stem cells. Experimental Hematology, 39(4), 495–505. https://doi.org/10.1016/j.exphem.2011.01.003. Virant-Klun, I. (2018). Functional testing of primitive oocyte-like cells developed in ovarian surface epithelium cell culture from small VSEL-like stem cells: can they be fertilized one day? Stem Cell Reviews and Reports, 14(5), 715–721. https://doi.org/10.1007/s12015-018-9832-y. Ratajczak, M. Z. (2018). Circulating stem cells in physiology and pathology - recent studies published in stem cell reviews and reports. Stem Cell Reviews and Reports, 14(5), 627–628. https://doi.org/10.1007/s12015-018-9842-9. Nowalk, J. R., & Flick, L. M. (2008). Visualization of different tissues involved in Endochondral ossification with Alcian blue Hematoxylin and Orange G/eosin counterstain. Journal of Histotechnology, 31(1), 19–21. https://doi.org/10.1179/014788808794748494. Han, Z., Bhavsar, M., Leppik, L., Oliveira, K. M. C., & Barker, J. H. (2018). Histological scoring method to assess bone healing in critical size bone defect models. Tissue Engineering. Part C, Methods, 24(5), 272–279. https://doi.org/10.1089/ten.tec.2017.0497. Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671–675. https://doi.org/10.1038/nmeth.2089. Henrich, D., Seebach, C., Kaehling, C., Scherzed, A., Wilhelm, K., Tewksbury, R., Powerski, M., & Marzi, I. (2009). Simultaneous cultivation of human endothelial-like differentiated precursor cells and human marrow stromal cells on beta-tricalcium phosphate. Tissue Engineering. Part C, Methods, 15(4), 551–560. https://doi.org/10.1089/ten.TEC.2008.0385. Seebach, C., Henrich, D., Kähling, C., Wilhelm, K., Tami, A. E., Alini, M., & Marzi, I. (2010). Endothelial progenitor cells and mesenchymal stem cells seeded onto beta-TCP granules enhance early vascularization and bone healing in a critical-sized bone defect in rats. Tissue Engineering. Part A, 16(6), 1961–1970. https://doi.org/10.1089/ten.TEA.2009.0715. Seebach, C., Henrich, D., Schaible, A., et al. (2015). Cell based therapy by implanted humane bone marrow-derived mononuclear cells (BMC) improved bone healing of large bone defects in rats. Tissue Engineering. Part A. https://doi.org/10.1089/ten.TEA.2014.0410. Seebach, C., Henrich, D., Wilhelm, K., et al. (2012). Endothelial progenitor cells improve directly and indirectly early vascularization of Mesenchymal stem cell-driven bone regeneration in a critical bone defect in rats. Cell Transplantation, 21(8), 1667–1677. https://doi.org/10.3727/096368912X638937. Henrich, D., Seebach, C., Verboket, R., et al. (2018). The osteo-inductive activity of bone-marrow-derived mononuclear cells resides within the CD14+ population and is independent of the CD34+ population. European Cells & Materials, 35, 165–177. https://doi.org/10.22203/eCM.v035a12. Chen, Z.-H., Lv, X., Dai, H., Liu, C., Lou, D., Chen, R., & Zou, G. M. (2015). Hepatic regenerative potential of mouse bone marrow very small embryonic-like stem cells. Journal of Cellular Physiology, 230(8), 1852–1861. https://doi.org/10.1002/jcp.24913. Guerin, C. L., Rossi, E., Saubamea, B., Cras, A., Mignon, V., Silvestre, J. S., & Smadja, D. M. (2017). Human very small embryonic-like cells support vascular maturation and therapeutic revascularization induced by endothelial progenitor cells. Stem Cell Reviews, 13(4), 552–560. https://doi.org/10.1007/s12015-017-9731-7. Miyanishi, M., Mori, Y., Seita, J., Chen, J. Y., Karten, S., Chan, C. K., Nakauchi, H., & Weissman, I. L. (2013). Do pluripotent stem cells exist in adult mice as very small embryonic stem cells? Stem Cell Reports, 1(2), 198–208. https://doi.org/10.1016/j.stemcr.2013.07.001. Abbott, A. (2013). Doubt cast over tiny stem cells. Nature, 499(7459), 390. https://doi.org/10.1038/499390a. Ratajczak, M. Z., Zuba-Surma, E., Wojakowski, W., Suszynska, M., Mierzejewska, K., Liu, R., Ratajczak, J., Shin, D. M., & Kucia, M. (2014). Very small embryonic-like stem cells (VSELs) represent a real challenge in stem cell biology: recent pros and cons in the midst of a lively debate. Leukemia, 28(3), 473–484. https://doi.org/10.1038/leu.2013.255. Suszynska, M., Zuba-Surma, E. K., Maj, M., Mierzejewska, K., Ratajczak, J., Kucia, M., & Ratajczak, M. Z. (2014). The proper criteria for identification and sorting of very small embryonic-like stem cells, and some nomenclature issues. Stem Cells and Development, 23(7), 702–713. https://doi.org/10.1089/scd.2013.0472. Ratajczak, M. Z., Ratajczak, J., & Kucia, M. (2019). Very small embryonic-like stem cells (VSELs). Circulation Research, 124(2), 208–210. https://doi.org/10.1161/CIRCRESAHA.118.314287. Lahlil, R., Scrofani, M., Barbet, R., Tancredi, C., Aries, A., & Hénon, P. (2018). VSELs maintain their Pluripotency and competence to differentiate after enhanced ex vivo expansion. Stem Cell Reviews and Reports, 14(4), 510–524. https://doi.org/10.1007/s12015-018-9821-1. Wojakowski, W., Jadczyk, T., Michalewska-Włudarczyk, A., Parma, Z., Markiewicz, M., Rychlik, W., Kostkiewicz, M., Gruszczyńska, K., Błach, A., Dzier Zak-Mietła, M., Wańha, W., Ciosek, J., Ochała, B., Rzeszutko, Ł., Cybulski, W., Partyka, Ł., Zasada, W., Włudarczyk, W., Dworowy, S., Kuczmik, W., Smolka, G., Pawłowski, T., Ochała, A., & Tendera, M. (2017). Effects of Transendocardial delivery of bone marrow-derived CD133+ cells on left ventricle perfusion and function in patients with refractory angina: Final results of randomized, double-blinded, placebo-controlled REGENT-VSEL trial. Circulation Research, 120(4), 670–680. https://doi.org/10.1161/CIRCRESAHA.116.309009. Richart, A., Loyer, X., Néri, T., Howangyin, K., Guérin, C. L., Ngkelo, A., Bakker, W., Zlatanova, I., Rouanet, M., Vilar, J., Lévy, B., Rothenberg, M., Mallat, Z., Pucéat, M., & Silvestre, J. S. (2014). MicroRNA-21 coordinates human multipotent cardiovascular progenitors therapeutic potential. Stem Cells, 32(11), 2908–2922. https://doi.org/10.1002/stem.1789. Orlic, D., Kajstura, J., Chimenti, S., Jakoniuk, I., Anderson, S. M., Li, B., Pickel, J., McKay, R., Nadal-Ginard, B., Bodine, D. M., Leri, A., & Anversa, P. (2001). Bone marrow cells regenerate infarcted myocardium. Nature, 410(6829), 701–705. https://doi.org/10.1038/35070587. Nygren, J. M., Jovinge, S., Breitbach, M., et al. (2004). Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nature Medicine, 10(5), 494–501. https://doi.org/10.1038/nm1040. Murry, C. E., Soonpaa, M. H., Reinecke, H., et al. (2004). Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature, 428(6983), 664–668. https://doi.org/10.1038/nature02446. Balsam, L. B., Wagers, A. J., Christensen, J. L., et al. (2004). Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature, 428(6983), 668–673. https://doi.org/10.1038/nature02460. Kassmer, S. H., & Krause, D. S. (2013). Very small embryonic-like cells: biology and function of these potential endogenous pluripotent stem cells in adult tissues. Molecular Reproduction and Development, 80(8), 677–690. https://doi.org/10.1002/mrd.22168. Guerin, C. L., Loyer, X., Vilar, J., Cras, A., Mirault, T., Gaussem, P., Silvestre, J. S., & Smadja, D. M. (2015). Bone-marrow-derived very small embryonic-like stem cells in patients with critical leg ischaemia: evidence of vasculogenic potential. Thrombosis and Haemostasis, 113(5), 1084–1094. https://doi.org/10.1160/TH14-09-0748. Antonenas, V., Garvin, F., Sartor, M., et al. (2006). Optimum temperature for maintaining the viability of CD34+ cells during storage and transport of fresh haematopoietic progenitor cells. Biology of Blood and Marrow Transplantation, 12(2), 133. https://doi.org/10.1016/j.bbmt.2005.11.410. Kao, G. S., Kim, H. T., Daley, H., Ritz, J., Burger, S. R., Kelley, L., Vierra-Green, C., Flesch, S., Spellman, S., Miller, J., & Confer, D. (2011). Validation of short-term handling and storage conditions for marrow and peripheral blood stem cell products. Transfusion, 51(1), 137–147. https://doi.org/10.1111/j.1537-2995.2010.02758.x. Mehta, M., Duda, G. N., Perka, C., & Strube, P. (2011). Influence of gender and fixation stability on bone defect healing in middle-aged rats: a pilot study. Clinical Orthopaedics and Related Research, 469(11), 3102–3110. https://doi.org/10.1007/s11999-011-1914-y. Tasso, R., Augello, A., Boccardo, S., Salvi, S., Caridà, M., Postiglione, F., Fais, F., Truini, M., Cancedda, R., & Pennesi, G. (2009). Recruitment of a host’s osteoprogenitor cells using exogenous mesenchymal stem cells seeded on porous ceramic. Tissue Engineering. Part A, 15(8), 2203–2212. https://doi.org/10.1089/ten.tea.2008.0269. Giannoni, P., Scaglione, S., Daga, A., et al. (2010). Short-time survival and engraftment of bone marrow stromal cells in an ectopic model of bone regeneration. Tissue Engineering. Part A, 16(2), 489–499. https://doi.org/10.1089/ten.TEA.2009.0041. Brennan, M. Á., Renaud, A., Amiaud, J., Rojewski, M. T., Schrezenmeier, H., Heymann, D., Trichet, V., & Layrolle, P. (2014). Pre-clinical studies of bone regeneration with human bone marrow stromal cells and biphasic calcium phosphate. Stem Cell Research & Therapy, 5(5), 114. https://doi.org/10.1186/scrt504. Miron, R. J., Zohdi, H., Fujioka-Kobayashi, M., & Bosshardt, D. D. (2016). Giant cells around bone biomaterials: osteoclasts or multi-nucleated giant cells? Acta Biomaterialia, 46, 15–28. https://doi.org/10.1016/j.actbio.2016.09.029. Tour, G., Wendel, M., & Tcacencu, I. (2014). Bone marrow stromal cells enhance the osteogenic properties of hydroxyapatite scaffolds by modulating the foreign body reaction. Journal of Tissue Engineering and Regenerative Medicine, 8(11), 841–849. https://doi.org/10.1002/term.1574. Gamblin, A.-L., Brennan, M. A., Renaud, A., Yagita, H., Lézot, F., Heymann, D., Trichet, V., & Layrolle, P. (2014). Bone tissue formation with human mesenchymal stem cells and biphasic calcium phosphate ceramics: the local implication of osteoclasts and macrophages. Biomaterials, 35(36), 9660–9667. https://doi.org/10.1016/j.biomaterials.2014.08.018. Werman, A., Werman-Venkert, R., White, R., Lee, J. K., Werman, B., Krelin, Y., Voronov, E., Dinarello, C. A., & Apte, R. N. (2004). The precursor form of IL-1alpha is an intracrine proinflammatory activator of transcription. Proceedings of the National Academy of Sciences, 101(8), 2434–2439. https://doi.org/10.1073/pnas.0308705101. Anderson, J. M., Rodriguez, A., & Chang, D. T. (2008). Foreign body reaction to biomaterials. Seminars in Immunology, 20(2), 86–100. https://doi.org/10.1016/j.smim.2007.11.004. Kyriakides, T. R., Foster, M. J., Keeney, G. E., Tsai, A., Giachelli, C. M., Clark-Lewis, I., Rollins, B. J., & Bornstein, P. (2004). The CC chemokine ligand, CCL2/MCP1, participates in macrophage fusion and foreign body giant cell formation. The American Journal of Pathology, 165(6), 2157–2166. https://doi.org/10.1016/S0002-9440(10)63265-8. Doloff, J. C., Veiseh, O., Vegas, A. J., Tam, H. H., Farah, S., Ma, M., Li, J., Bader, A., Chiu, A., Sadraei, A., Aresta-Dasilva, S., Griffin, M., Jhunjhunwala, S., Webber, M., Siebert, S., Tang, K., Chen, M., Langan, E., Dholokia, N., Thakrar, R., Qi, M., Oberholzer, J., Greiner, D. L., Langer, R., & Anderson, D. G. (2017). Colony stimulating factor-1 receptor is a central component of the foreign body response to biomaterial implants in rodents and non-human primates. Nature Materials, 16(6), 671–680. https://doi.org/10.1038/nmat4866. Liu, Y., Wang, L., Kikuiri, T., et al. (2011). Mesenchymal stem cell–based tissue regeneration is governed by recipient T lymphocytes via IFN-γ and TNF-α. Nature Medicine, 17, 1594 EP. https://doi.org/10.1038/nm.2542. Kiefer, F., & Siekmann, A. F. (2011). The role of chemokines and their receptors in angiogenesis. Cellular and Molecular Life Sciences, 68(17), 2811–2830. https://doi.org/10.1007/s00018-011-0677-7. Choong, M. L., Yong, Y. P., Tan, A. C. L., Luo, B., & Lodish, H. F. (2004). LIX: a chemokine with a role in hematopoietic stem cells maintenance. Cytokine, 25(6), 239–245. https://doi.org/10.1016/j.cyto.2003.11.002.