Role and effective treatment of dispersive forces in materials: Polyethylene and graphite crystals as test cases

Journal of Computational Chemistry - Tập 30 Số 6 - Trang 934-939 - 2009
Vincenzo Barone1,2,3, Maurizio Casarin4,5,2, Daniel Forrer5,2, Michele Pavone1,4,2, Mauro Sambi4,5,2, Andrea Vittadini4,5,2
1CR-INSTM “Village,” Complesso Universitario Monte Sant'Angelo, Via Cintia, 80126 Napoli, Italy
2ISTM-CNR, Via Marzolo 1, 35131 Padova, Italy
3Istituto per i Processi Chimico-Fisici, CNR, Area della Ricerca del CNR Via Moruzzi 1, 56124 Pisa, Italy
4Dipartimento di Chimica “Paolo Corradini,” Università di Napoli “Federico II,” Complesso Universitario Monte Sant'Angelo, Via Cintia, 80126 Napoli, Italy
5Dipartimento di Scienze Chimiche, Università di Padova, CR-INSTM “Village,” Via Marzolo 1, 35131 Padova, Italy

Tóm tắt

AbstractA semiempirical addition of dispersive forces to conventional density functionals (DFT‐D) has been implemented into a pseudopotential plane‐wave code. Test calculations on the benzene dimer reproduced the results obtained by using localized basis set, provided that the latter are corrected for the basis set superposition error. By applying the DFT‐D/plane‐wave approach a substantial agreement with experiments is found for the structure and energetics of polyethylene and graphite, two typical solids that are badly described by standard local and semilocal density functionals. © 2008 Wiley Periodicals, Inc. J Comput Chem, 2009

Từ khóa


Tài liệu tham khảo

Koch W., 2002, A Chemist's Guide to Density Functional Theory

10.1016/0009-2614(94)01027-7

Lee E. C., 2007, J Chem Phys A, 111, 3446, 10.1021/jp068635t

10.1007/BF01421741

Szabo A., 1999, Modern Quantum Chemistry

10.1016/j.cplett.2007.09.003

10.1002/qua.20314

10.1021/ar700208h

10.1063/1.1412004

10.1002/jcc.20495

10.1063/1.1424928

10.1021/jp076362b

10.1016/j.cplett.2007.12.075

10.1021/jp0720791

10.1103/PhysRevB.73.205101

10.1039/B715018K

10.1103/PhysRevLett.93.153004

10.1103/PhysRevB.75.205131

10.1021/jp0750102

Baroni S.;dal Corso A.;de Gironcoli S.;Giannozzi P.;Cavazzoni C.;Ballabio G.;Scandolo S.;Chiarotti G.;Focher P.;Pasquarello A.;Laasonen K.;Trave A.;Car R.;Marzari N.;Kokalj A.Plane‐wave self‐consistent field.http://www.pwscf.org/.

Dulcéré J.‐M., 2007, J Phys Chem B, 111, 13124, 10.1021/jp072317s

10.1002/jcc.20570

10.1063/1.1674902

10.1103/PhysRevLett.77.3865

10.1103/PhysRevB.41.7892

Frisch M. J., 2004, Gaussian 03, Revision C.02

10.1063/1.462569

10.1016/j.cplett.2007.02.034

10.1080/00268977000101561

10.1002/pol.1975.130130607

10.1016/S0009-2614(00)00881-2

10.1103/PhysRevB.76.100201

10.1103/PhysRevLett.82.3296

10.1103/PhysRevLett.91.126402

10.1103/PhysRevB.40.993

Ludsteck A., 1972, Acta Cryst, 28, 59, 10.1107/S0567739472000130

10.1103/PhysRevB.35.8207

10.1063/1.1663777

10.1063/1.1743030

10.1016/S0009-2614(97)01466-8

10.1103/PhysRevB.69.155406

10.1103/PhysRev.71.809

10.1103/PhysRevB.39.12598