Robust implementation of generative modeling with parametrized quantum circuits

Vicente Leyton-Ortega1, Alejandro Perdomo-Ortiz2, Óscar Perdomo2
1Computer Science and Engineering Division, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN, 37831, USA
2Rigetti Computing, 2919 Seventh Street, Berkeley, CA, 94710-2704, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Benedetti M, Garcia-Pintos D, Perdomo O, Leyton-Ortega V, Nam Y, Perdomo-Ortiz A (2019) A generative modeling approach for benchmarking and training shallow quantum circuits. npj Quantum Inf 5:45

Hamilton KE, Dumitrescu EF, Pooser RC (2018) Generative model benchmarks for superconducting qubits. arXiv:1811.09905

Zhu D, Linke NM, Benedetti M, Landsman KA, Nguyen NH, Alderete CH, Perdomo-Ortiz A, Korda N, Garfoot A, Brecque C, Egan L, Perdomo O, Monroe C (2018) Training of quantum circuits on a hybrid quantum computer. arXiv:1812.08862

Peruzzo A, McClean J, Shadbolt P, Yung M-H, Zhou X-Q, Love PJ, Aspuru-Guzik A, O’Brien JL (2014) A variational eigenvalue solver on a photonic quantum processor, vol 5. EP –

McClean JR, Romero J, Babbush R, Aspuru-Guzik A (2016) The theory of variational hybrid quantum-classical algorithms. New J Phys 18:023023

Farhi SGE, Goldstone J (2014) A quantum approximate optimization algorithm. arXiv:1411.4028

Higuchi A, Sudbery AW (2000) How entangled can two couples get? Phys Lett A 273:213–217

Alcazar J, Leyton-Ortega V, Perdomo-Ortiz A (2020) Classical versus quantum models in machine learning: insights from a finance application. Mach Learn Sci Technol 1:035003

Coyle B, Henderson M, Le JCJ, Kumar N, Paini M, Kashefi E (2020) Quantum versus classical generative modelling in finance. Quantum Sci Technol

Liu Y-R, Hu Y-Q, Hu Q, Yu Y, Qian C (2017) Toolbox for derivative-free optimization. arXiv:1801.00329

Perdomo O, Wei F (2021) The blade flapping motion using a new induced velocity model. In preparation

Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. arXiv:1412.6980

Liu J-G, Wang L (2018) Differentiable learning of quantum circuit born machines. Phys Rev A 98:062324

Du Y, Hsieh M-H, Liu T, Tao D (2018) The expressive power of parameterized quantum circuits. arXiv:1810.11922

Snoek J, Larochelle H, Adams RP (2012) Practical bayesian optimization of machine learning algorithms. arXiv:1206.2944

McClean JR, Boixo S, Smelyanskiy VN, Babbush R, Neven H (2018) Barren plateaus in quantum neural network training landscapes. Nat Commun 9:4812

Cerezo M, Sone A, Volkoff T, Cincio L, Coles PJ (2020) Cost-function-dependent barren plateaus in shallow quantum neural networks. arXiv:2001.00550

Weng L (2019) From gan to wgan. arXiv:1904.08994

Perdomo O, Leyton-Ortega V, Perdomo-Ortiz A (2021) Entanglement types for two-qubit states with real amplitudes. Quantum Inf Process 20:89

Kandala A, Mezzacapo A, Temme K, Takita M, Brink M, Chow JM, Gambetta JM (2017) Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549:242

Dumitrescu EF, McCaskey AJ, Hagen G, Jansen GR, Morris TD, Papenbrock T, Pooser RC, Dean DJ, Lougovski P (2018) Cloud quantum computing of an atomic nucleus. Phys Rev Lett 120:210501

Magnard P, Kurpiers P, Royer B, Walter T, Besse J-C, Gasparinetti S, Pechal M, Heinsoo J, Storz S, Blais A, Wallraff A (2018) Fast and unconditional all-microwave reset of a superconducting qubit. Phys Rev Lett 121:060502