Robust fairing via conformal curvature flow
Tóm tắt
We present a formulation of Willmore flow for triangulated surfaces that permits extraordinarily large time steps and naturally preserves the quality of the input mesh. The main insight is that Willmore flow becomes remarkably stable when expressed in curvature space -- we develop the precise conditions under which curvature is allowed to evolve. The practical outcome is a highly efficient algorithm that naturally preserves texture and does not require remeshing during the flow. We apply this algorithm to surface fairing, geometric modeling, and construction of constant mean curvature (CMC) surfaces. We also present a new algorithm for length-preserving flow on planar curves, which provides a valuable analogy for the surface case.
Từ khóa
Tài liệu tham khảo
Blaschke W. and Thomsen G. 1929. Vorlesungen über Differentialgeometrie III. Springer Ch. Invarianten der Kreisgeometrie von Möbius 46--91. Blaschke W. and Thomsen G. 1929. Vorlesungen über Differentialgeometrie III . Springer Ch. Invarianten der Kreisgeometrie von Möbius 46--91.
Bobenko , A. , and Schröder P 2005. Discrete Willmore Flow. In Proc. Symp. Geom. Proc., 101--110 . Bobenko, A., and Schröder P 2005. Discrete Willmore Flow. In Proc. Symp. Geom. Proc., 101--110.
Bohle C. and Pinkall U. 2013. Conformal Deformations of Immersed Discs in R3 and Elliptic Boundary Value Problems. ArXiv e-prints (Jan.). Bohle C. and Pinkall U. 2013. Conformal Deformations of Immersed Discs in R 3 and Elliptic Boundary Value Problems. ArXiv e-prints (Jan.).
Crane K. 2012. SpinXForm. http://multires.caltech.edu/~keenan/project_spinxform.html#sourcecode. Crane K. 2012. SpinXForm. http://multires.caltech.edu/~keenan/project_spinxform.html#sourcecode.
Desbrun , M. , Kanso , E. , and Tong , Y 2008. Discrete Differential Forms for Computational Modeling . In Discrete Differential Geometry, A. I. Bobenko, P. Schröder, J. M. Sullivan, and G. M. Ziegler, Eds., Vol. 38 of Oberwolfach Seminars . Birkhäuser Verlag , 287--324. Desbrun, M., Kanso, E., and Tong, Y 2008. Discrete Differential Forms for Computational Modeling. In Discrete Differential Geometry, A. I. Bobenko, P. Schröder, J. M. Sullivan, and G. M. Ziegler, Eds., Vol. 38 of Oberwolfach Seminars. Birkhäuser Verlag, 287--324.
Eckstein , I. , Pons , J.-P. , Tong , Y. , Kuo , C. J. , and Desbrun , M . 2007. Generalized Surface Fows for Mesh Processing . In Proc. Symp. Geom. Proc., 183--192 . Eckstein, I., Pons, J.-P., Tong, Y., Kuo, C. J., and Desbrun, M. 2007. Generalized Surface Fows for Mesh Processing. In Proc. Symp. Geom. Proc., 183--192.
Kamberoy G. Norman P. Pedit F. and Pinkall U . 2002 . Quaternions Spinors and Surfaces Vol. 299 of Contemp . Math. AMS. Kamberoy G. Norman P. Pedit F. and Pinkall U. 2002. Quaternions Spinors and Surfaces Vol. 299 of Contemp. Math . AMS.
Yoshizawa , S. , and Belyaev , A. G . 2002 . Fair Triangle Mesh Generation with Discrete Elastica. In Geo. Mod. & Proc., 119--123 . Yoshizawa, S., and Belyaev, A. G. 2002. Fair Triangle Mesh Generation with Discrete Elastica. In Geo. Mod. & Proc., 119--123.