Robust fairing via conformal curvature flow

ACM Transactions on Graphics - Tập 32 Số 4 - Trang 1-10 - 2013
Keenan Crane1, Ulrich Pinkall2, Peter Schröder1
1Caltech,
2[TU- Berlin]

Tóm tắt

We present a formulation of Willmore flow for triangulated surfaces that permits extraordinarily large time steps and naturally preserves the quality of the input mesh. The main insight is that Willmore flow becomes remarkably stable when expressed in curvature space -- we develop the precise conditions under which curvature is allowed to evolve. The practical outcome is a highly efficient algorithm that naturally preserves texture and does not require remeshing during the flow. We apply this algorithm to surface fairing, geometric modeling, and construction of constant mean curvature (CMC) surfaces. We also present a new algorithm for length-preserving flow on planar curves, which provides a valuable analogy for the surface case.

Từ khóa


Tài liệu tham khảo

Blaschke W. and Thomsen G. 1929. Vorlesungen über Differentialgeometrie III. Springer Ch. Invarianten der Kreisgeometrie von Möbius 46--91. Blaschke W. and Thomsen G. 1929. Vorlesungen über Differentialgeometrie III . Springer Ch. Invarianten der Kreisgeometrie von Möbius 46--91.

Bobenko , A. , and Schröder P 2005. Discrete Willmore Flow. In Proc. Symp. Geom. Proc., 101--110 . Bobenko, A., and Schröder P 2005. Discrete Willmore Flow. In Proc. Symp. Geom. Proc., 101--110.

Bohle C. and Pinkall U. 2013. Conformal Deformations of Immersed Discs in R3 and Elliptic Boundary Value Problems. ArXiv e-prints (Jan.). Bohle C. and Pinkall U. 2013. Conformal Deformations of Immersed Discs in R 3 and Elliptic Boundary Value Problems. ArXiv e-prints (Jan.).

10.1145/1057432.1057457

10.1111/j.1467-8659.2012.03171.x

10.1080/10586458.1992.10504253

10.1016/S0022-5193(70)80032-7

10.1145/122718.122746

10.1145/1391989.1391995

10.1016/j.cagd.2004.02.004

10.4007/annals.2012.175.2.7

10.1145/2010324.1964999

Crane K. 2012. SpinXForm. http://multires.caltech.edu/~keenan/project_spinxform.html#sourcecode. Crane K. 2012. SpinXForm. http://multires.caltech.edu/~keenan/project_spinxform.html#sourcecode.

10.1016/j.cag.2008.01.009

10.1145/311535.311576

Desbrun , M. , Kanso , E. , and Tong , Y 2008. Discrete Differential Forms for Computational Modeling . In Discrete Differential Geometry, A. I. Bobenko, P. Schröder, J. M. Sullivan, and G. M. Ziegler, Eds., Vol. 38 of Oberwolfach Seminars . Birkhäuser Verlag , 287--324. Desbrun, M., Kanso, E., and Tong, Y 2008. Discrete Differential Forms for Computational Modeling. In Discrete Differential Geometry, A. I. Bobenko, P. Schröder, J. M. Sullivan, and G. M. Ziegler, Eds., Vol. 38 of Oberwolfach Seminars. Birkhäuser Verlag, 287--324.

Eckstein , I. , Pons , J.-P. , Tong , Y. , Kuo , C. J. , and Desbrun , M . 2007. Generalized Surface Fows for Mesh Processing . In Proc. Symp. Geom. Proc., 183--192 . Eckstein, I., Pons, J.-P., Tong, Y., Kuo, C. J., and Desbrun, M. 2007. Generalized Surface Fows for Mesh Processing. In Proc. Symp. Geom. Proc., 183--192.

10.1007/BF03321885

10.1515/znc-1973-11-1209

10.1215/S0012-7094-98-09219-5

Kamberoy G. Norman P. Pedit F. and Pinkall U . 2002 . Quaternions Spinors and Surfaces Vol. 299 of Contemp . Math. AMS. Kamberoy G. Norman P. Pedit F. and Pinkall U. 2002. Quaternions Spinors and Surfaces Vol. 299 of Contemp. Math . AMS.

10.1111/j.1467-8659.2012.03179.x

10.1007/978-3-642-03596-8_16

10.1145/2185520.2185581

10.1007/BF03025897

10.1145/383259.383307

10.1016/S0167-8396(01)00036-X

10.1145/218380.218473

10.1016/j.cagd.2007.07.006

10.1145/192161.192216

Yoshizawa , S. , and Belyaev , A. G . 2002 . Fair Triangle Mesh Generation with Discrete Elastica. In Geo. Mod. & Proc., 119--123 . Yoshizawa, S., and Belyaev, A. G. 2002. Fair Triangle Mesh Generation with Discrete Elastica. In Geo. Mod. & Proc., 119--123.