Robust estimation of sulcal morphology
Tóm tắt
While it is well established that cortical morphology differs in relation to a variety of inter-individual factors, it is often characterized using estimates of volume, thickness, surface area, or gyrification. Here we developed a computational approach for estimating sulcal width and depth that relies on cortical surface reconstructions output by FreeSurfer. While other approaches for estimating sulcal morphology exist, studies often require the use of multiple brain morphology programs that have been shown to differ in their approaches to localize sulcal landmarks, yielding morphological estimates based on inconsistent boundaries. To demonstrate the approach, sulcal morphology was estimated in three large sample of adults across the lifespan, in relation to aging. A fourth sample is additionally used to estimate test–retest reliability of the approach. This toolbox is now made freely available as supplemental to this paper:
https://cmadan.github.io/calcSulc/
.
Tài liệu tham khảo
Fjell AM, Westlye LT, Amlien I, Espeseth T, Reinvang I, Raz N et al (2009) High consistency of regional cortical thinning in aging across multiple samples. Cereb Cortex 19:2001–2012. https://doi.org/10.1093/cercor/bhn232
Hogstrom LJ, Westlye LT, Walhovd KB, Fjell AM (2013) The structure of the cerebral cortex across adult life: age-related patterns of surface area, thickness, and gyrification. Cereb Cortex 23:2521–2530. https://doi.org/10.1093/cercor/bhs231
Hutton C, Draganski B, Ashburner J, Weiskopf N (2009) A comparison between voxel-based cortical thickness and voxel-based morphometry in normal aging. NeuroImage 48:371–380. https://doi.org/10.1016/j.neuroimage.2009.06.043
Lemaitre H, Goldman AL, Sambataro F, Verchinski BA, Meyer-Lindenberg A, Weinberger DR, Mattay VS (2012) Normal age-related brain morphometric changes: nonuniformity across cortical thickness, surface area and gray matter volume? Neurobiol Aging 33:617.e1–617.e9. https://doi.org/10.1016/j.neurobiolaging.2010.07.013
Madan CR (2018) Age differences in head motion and estimates of cortical morphology. PeerJ 6:e5176. https://doi.org/10.7717/peerj.5176
Madan CR, Kensinger EA (2016) Cortical complexity as a measure of age-related brain atrophy. NeuroImage 134:617–629. https://doi.org/10.1016/j.neuroimage.2016.04.029
Madan CR, Kensinger EA (2018) Predicting age from cortical structure across the lifespan. Eur J Neurosci 47:399–416. https://doi.org/10.1111/ejn.13835
McKay DR, Knowles EEM, Winkler AAM, Sprooten E, Kochunov P, Olvera RL et al (2014) Influence of age, sex and genetic factors on the human brain. Brain Imaging Behav 8:143–152. https://doi.org/10.1007/s11682-013-9277-5
Salat DH, Buckner RL, Snyder AZ, Greve DN, Desikan RSR, Busa E et al (2004) Thinning of the cerebral cortex in aging. Cereb Cortex 14:721–730. https://doi.org/10.1093/cercor/bhh032
Sowell ER, Peterson BS, Kan E, Woods RP, Yoshii J, Bansal R et al (2007) Sex differences in cortical thickness mapped in 176 healthy individuals between 7 and 87 years of age. Cereb Cortex 17:1550–1560. https://doi.org/10.1093/cercor/bhl066
Sowell ER, Peterson BS, Thompson PM, Welcome SE, Henkenius AL, Toga AW (2003) Mapping cortical change across the human life span. Nat Neurosci 6:309–315. https://doi.org/10.1038/nn1008
Coffey CE, Wilkinson WE, Parashos L, Soady S, Sullivan RJ, Patterson LJ et al (1992) Quantitative cerebral anatomy of the aging human brain: a cross-sectional study using magnetic resonance imaging. Neurology 42(3):527–527. https://doi.org/10.1212/wnl.42.3.527
Drayer BP (1988) Imaging of the aging brain. Part I. Normal findings. Radiology 166(3):785–796. https://doi.org/10.1148/radiology.166.3.3277247
Jacoby RJ, Levy R, Dawson JM (1980) Computed tomography in the elderly: I. The normal population. Br J Psychiatry 136:249–255. https://doi.org/10.1192/bjp.136.3.249
Laffey PA, Peyster RG, Nathan R, Haskin ME, McGinley JA (1984) Computed tomography and aging: results in a normal elderly population. Neuroradiology 26:273–278. https://doi.org/10.1007/BF00339770
Tomlinson B, Blessed G, Roth M (1968) Observations on the brains of non-demented old people. J Neurol Sci 7:331–356. https://doi.org/10.1016/0022-510x(68)90154-8
Yue NC, Arnold AM, Longstreth WT, Elster AD, Jungreis CA, O’Leary DH et al (1997) Sulcal, ventricular, and white matter changes at MR imaging in the aging brain: data from the cardiovascular health study. Radiology 202:33–39. https://doi.org/10.1148/radiology.202.1.8988189
Pasquier F, Leys D, Weerts JG, Mounier-Vehier F, Barkhof F, Scheltens P (1996) Inter-and intraobserver reproducibility of cerebral atrophy assessment on MRI scans with hemispheric infarcts. Eur Neurol 36:268–272. https://doi.org/10.1159/000117270
Scheltens P, Pasquier F, Weerts JG, Barkhof F, Leys D (1997) Qualitative assessment of cerebral atrophy on MRI: inter- and intra-observer reproducibility in dementia and normal aging. Eur Neurol 37:95–99. https://doi.org/10.1159/000117417
Kochunov P, Mangin J-F, Coyle T, Lancaster J, Thompson P, Rivière D et al (2005) Age-related morphology trends of cortical sulci. Hum Brain Mapp 26:210–220. https://doi.org/10.1002/hbm.20198
Kochunov P, Thompson PM, Coyle TR, Lancaster JL, Kochunov V, Royall D et al (2008) Relationship among neuroimaging indices of cerebral health during normal aging. Hum Brain Mapp 29:36–45. https://doi.org/10.1002/hbm.20369
Liu T, Sachdev PS, Lipnicki DM, Jiang J, Geng G, Zhu W et al (2013) Limited relationships between two-year changes in sulcal morphology and other common neuroimaging indices in the elderly. NeuroImage 83:12–17. https://doi.org/10.1016/j.neuroimage.2013.06.058
Liu T, Wen W, Zhu W, Trollor J, Reppermund S, Crawford J et al (2010) The effects of age and sex on cortical sulci in the elderly. NeuroImage 51:19–27. https://doi.org/10.1016/j.neuroimage.2010.02.016
Cao B, Mwangi B, Passos IC, Wu M-J, Keser Z, Zunta-Soares GB et al (2017) Lifespan gyrification trajectories of human brain in healthy individuals and patients with major psychiatric disorders. Sci Rep 7:511. https://doi.org/10.1038/s41598-017-00582-1
Liu T, Wen W, Zhu W, Kochan NA, Trollor JN, Reppermund S et al (2011) The relationship between cortical sulcal variability and cognitive performance in the elderly. NeuroImage 56:865–873. https://doi.org/10.1016/j.neuroimage.2011.03.015
Lamont AJ, Mortby ME, Anstey KJ, Sachdev PS, Cherbuin N (2014) Using sulcal and gyral measures of brain structure to investigate benefits of an active lifestyle. NeuroImage 91:353–359. https://doi.org/10.1016/j.neuroimage.2014.01.008
Andersen SK, Jakobsen CE, Pedersen CH, Rasmussen AM, Plocharski M, Østergaard LR (2015) Classification of Alzheimer’s disease from MRI using sulcal morphology. In: Scandinavian conference on image analysis (SCIA): image analysis. Springer, pp 103–113. https://doi.org/10.1007/978-3-319-19665-7_9
Hamelin L, Bertoux M, Bottlaender M, Corne H, Lagarde J, Hahn V et al (2015) Sulcal morphology as a new imaging marker for the diagnosis of early onset Alzheimer’s disease. Neurobiol Aging 36(11):2932–2939. https://doi.org/10.1016/j.neurobiolaging.2015.04.019
Huckman MS, Fox J, Topel J (1975) The validity of criteria for the evaluation of cerebral atrophy by computed tomography. Radiology 116:85–92. https://doi.org/10.1148/116.1.85
Liu T, Lipnicki DM, Zhu W, Tao D, Zhang C, Cui Y et al (2012) Cortical gyrification and sulcal spans in early stage Alzheimer’s disease. PLoS ONE 7:e31083. https://doi.org/10.1371/journal.pone.0031083
Ming J, Harms MP, Morris JC, Beg MF, Wang L (2015) Integrated cortical structural marker for Alzheimer’s disease. Neurobiol Aging 36:S53–S59. https://doi.org/10.1016/j.neurobiolaging.2014.03.042
Plocharski M, Østergaard LR (2016) Extraction of sulcal medial surface and classification of Alzheimer’s disease using sulcal features. Comput Methods Progr Biomed 133:35–44. https://doi.org/10.1016/j.cmpb.2016.05.009
Reiner P, Jouvent E, Duchesnay E, Cuingnet R, Mangin J-F, Chabriat H (2012) Sulcal span in Alzheimer’s disease, amnestic mild cognitive impairment, and healthy controls. J Alzheimer’s Dis 29:605–613. https://doi.org/10.3233/JAD-2012-111622
Largen JW, Smith RC, Calderon M, Baumgartner R, Lu RB, Schoolar JC, Ravichandran GK (1984) Abnormalities of brain structure and density in schizophrenia. Biol Psychiatry 19:991–1013
Palaniyappan L, Park B, Balain V, Dangi R, Liddle P (2015) Abnormalities in structural covariance of cortical gyrification in schizophrenia. Brain Struct Funct 220(4):2059–2071. https://doi.org/10.1007/s00429-014-0772-2
Rieder RO, Donnelly EF, Herdt JR, Waldman IN (1979) Sulcal prominence in young chronic schizophrenic patients: CT scan findings associated with impairment on neuropsychological tests. Psychiatry Res 1(1):1–8. https://doi.org/10.1016/0165-1781(79)90021-0
Elkis H, Friedman L, Wise A, Meltzer HY (1995) Meta-analyses of studies of ventricular enlargement and cortical sulcal prominence in mood disorders. Arch Gen Psychiatry 52(9):735–746. https://doi.org/10.1001/archpsyc.1995.03950210029008
Fischl B (2012) FreeSurfer. NeuroImage 62:774–781. https://doi.org/10.1016/j.neuroimage.2012.01.021
Kochunov P, Rogers W, Mangin J-F, Lancaster J (2012) A library of cortical morphology analysis tools to study development, aging and genetics of cerebral cortex. Neuroinformatics 10:81–96. https://doi.org/10.1007/s12021-011-9127-9
Mangin J-F, Riviere D, Cachia A, Duchesnay E, Cointepas Y, Papadopoulos-Orfanos D et al (2004) Object-based morphometry of the cerebral cortex. IEEE Trans Med Imaging 23:968–982. https://doi.org/10.1109/tmi.2004.831204
Mangin J-F, Rivière D, Coulon O, Poupon C, Cachia A, Cointepas Y et al (2004) Coordinate-based versus structural approaches to brain image analysis. Artif Intell Med 30:177–197. https://doi.org/10.1016/s0933-3657(03)00064-2
Rivière D, Mangin J-F, Papadopoulos-Orfanos D, Martinez J-M, Frouin V, Régis J (2002) Automatic recognition of cortical sulci of the human brain using a congregation of neural networks. Med Image Anal 6:77–92. https://doi.org/10.1016/s1361-8415(02)00052-x
Cai K, Xu H, Guan H, Zhu W, Jiang J, Cui Y et al (2017) Identification of early-stage Alzheimer’s disease using sulcal morphology and other common neuroimaging indices. PLoS ONE 12:e0170875. https://doi.org/10.1371/journal.pone.0170875
Pizzagalli F, Auzias G, Kochunov P, Faskowitz JI, Thompson PM, Jahanshad N (2017) The core genetic network underlying sulcal morphometry. In: Romero E, Lepore N, Brieva J, Larrabide I (eds) International symposium on medical information processing and analysis. SPIE. https://doi.org/10.1117/12.2256959
Mikhael S, Hoogendoorn C, Valdes-Hernandez M, Pernet C (2018) A critical analysis of neuroanatomical software protocols reveals clinically relevant differences in parcellation schemes. NeuroImage 170:348–364. https://doi.org/10.1016/j.neuroimage.2017.02.082
Lee JK, Lee J-M, Kim JS, Kim IY, Evans AC, Kim SI (2006) A novel quantitative cross-validation of different cortical surface reconstruction algorithms using MRI phantom. NeuroImage 31:572–584. https://doi.org/10.1016/j.neuroimage.2005.12.044
Campero A, Ajler P, Emmerich J, Goldschmidt E, Martins C, Rhoton A (2014) Brain sulci and gyri: a practical anatomical review. J Clin Neurosci 21:2219–2225. https://doi.org/10.1016/j.jocn.2014.02.024
John JP, Wang L, Moffitt AJ, Singh HK, Gado MH, Csernansky JG (2006) Inter-rater reliability of manual segmentation of the superior, inferior and middle frontal gyri. Psychiatry Res Neuroimaging 148(2–3):151–163. https://doi.org/10.1016/j.pscychresns.2006.05.006
Ono M, Kubick S, Abernathey CD (1990) Atlas of the cerebral sulci. Thieme, Stuttgart
Rhoton AL (2007) The cerebrum. Neurosurgery 61(suppl1):SHC-37–SHC-119. https://doi.org/10.1227/01.neu.0000255490.88321.ce
ten Donkelaar HJ, Tzourio-Mazoyer N, Mai JK (2018) Toward a common terminology for the gyri and sulci of the human cerebral cortex. Front Neuroanat 12:93. https://doi.org/10.3389/fnana.2018.00093
Welker W (1990) Why does cerebral cortex fissure and fold? In: Jones EG, Peters A (eds) Cerebral cortex, vol 8B. Springer, Berlin, pp 3–136. https://doi.org/10.1007/978-1-4615-3824-0_1
Andreasen NC, Harris G, Cizadlo T, Arndt S, O’Leary DS, Swayze V, Flaum M (1994) Techniques for measuring sulcal/gyral patterns in the brain as visualized through magnetic resonance scanning: BRAINPLOT and BRAINMAP. Proc Natl Acad Sci 91(1):93–97. https://doi.org/10.1073/pnas.91.1.93
Auzias G, Brun L, Deruelle C, Coulon O (2015) Deep sulcal landmarks: algorithmic and conceptual improvements in the definition and extraction of sulcal pits. NeuroImage 111:12–25. https://doi.org/10.1016/j.neuroimage.2015.02.008
Beeston CJ, Taylor CJ (2000) Automatic landmarking of cortical sulci. In: Medical image computing and computer-assisted intervention–MICCAI 2000. Springer, Berlin, pp 125–133. https://doi.org/10.1007/978-3-540-40899-4_13
Behnke KJ, Rettmann ME, Pham DL, Shen D, Resnick SM, Davatzikos C, Prince JL (2003) Automatic classification of sulcal regions of the human brain cortex using pattern recognition. In: Sonka M, Fitzpatrick JM (eds) Medical imaging 2003: image processing. SPIE, pp 1499–1510. https://doi.org/10.1117/12.480834
Eskildsen SF, Uldahl M, Ostergaard LR (2005) Extraction of the cerebral cortical boundaries from MRI for measurement of cortical thickness. In: Fitzpatrick JM, Reinhardt JM (eds) Medical imaging 2005: image processing. SPIE, Bellingham. https://doi.org/10.1117/12.595145
Im K, Jo HJ, Mangin J-F, Evans AC, Kim SI, Lee J-M (2010) Spatial distribution of deep sulcal landmarks and hemispherical asymmetry on the cortical surface. Cereb Cortex 20(3):602–611. https://doi.org/10.1093/cercor/bhp127
Jones SE, Buchbinder BR, Aharon I (2000) Three-dimensional mapping of cortical thickness using Laplace’s equation. Hum Brain Mapp 11(1):12–32. https://doi.org/10.1002/1097-0193(200009)11:1<12::AID-HBM20>3.0.CO;2-K
Le Goualher G, Barillot C, Bizais YJ, Scarabin J-M (1996) Three-dimensional segmentation of cortical sulci using active models. In: Loew MH, Hanson KM (eds) Medical imaging 1996: image processing. SPIE, pp 254–263. https://doi.org/10.1117/12.237928
Le Goualher G, Collins DL, Barillot C, Evans AC (1998) Automatic identificaiton of cortical sulci using a 3d probabilistic atlas. In: Medical image computing and computer-assisted intervention—MICCAI’98. Springer, Berlin, pp 509–518. https://doi.org/10.1007/bfb0056236
Le Troter A, Auzias G, Coulon O (2012) Automatic sulcal line extraction on cortical surfaces using geodesic path density maps. NeuroImage 61(4):941–949. https://doi.org/10.1016/j.neuroimage.2012.04.021
Li G, Guo L, Nie J, Liu T (2010) An automated pipeline for cortical sulcal fundi extraction. Med Image Anal 14(3):343–359. https://doi.org/10.1016/j.media.2010.01.005
Li G, Shen D (2011) Consistent sulcal parcellation of longitudinal cortical surfaces. NeuroImage 57:76–88. https://doi.org/10.1016/j.neuroimage.2011.03.064
Lohmann G, von Cramon DY (2000) Automatic labelling of the human cortical surface using sulcal basins. Med Image Anal 4(3):179–188. https://doi.org/10.1016/s1361-8415(00)00024-4
Lohmann G, von Cramon DY, Colchester ACF (2008) Deep sulcal landmarks provide an organizing framework for human cortical folding. Cereb Cortex 18(6):1415–1420. https://doi.org/10.1093/cercor/bhm174
Nowinski WL, Raphel JK, Nguyen BT (1996) Atlas-based identification of cortical sulci. In: Kim Y (ed) Medical imaging 1996: image display. SPIE, Bellingham, pp 64–74. https://doi.org/10.1117/12.238488
Oguz I, Cates J, Fletcher T, Whitaker R, Cool D, Aylward S, Styner M (2008) Cortical correspondence using entropy-based particle systems and local features. In: 2008 5th IEEE international symposium on biomedical imaging: from nano to macro. IEEE, pp 1637–1640. https://doi.org/10.1109/isbi.2008.4541327
Perrot M, Rivière D, Mangin J-F (2011) Cortical sulci recognition and spatial normalization. Med Image Anal 15(4):529–550. https://doi.org/10.1016/j.media.2011.02.008
Royackkers N, Desvignes M, Fawal H, Revenu M (1999) Detection and statistical analysis of human cortical sulci. NeuroImage 10(6):625–641. https://doi.org/10.1006/nimg.1999.0512
Thompson PM, Schwartz C, Lin RT, Khan AA, Toga AW (1996) Three-dimensional statistical analysis of sulcal variability in the human brain. J Neurosci 16(13):4261–4274. https://doi.org/10.1523/jneurosci.16-13-04261.1996
Vaillant M, Davatzikos C (1997) Finding parametric representations of the cortical sulci using an active contour model. Med Image Anal 1(4):295–315. https://doi.org/10.1016/s1361-8415(97)85003-7
Yang F, Kruggel F (2008) Automatic segmentation of human brain sulci. Med Image Anal 12:442–451. https://doi.org/10.1016/j.media.2008.01.003
Yun HJ, Im K, Yang J-J, Yoon U, Lee J-M (2013) Automated sulcal depth measurement on cortical surface reflecting geometrical properties of sulci. PLoS ONE 8(2):e55977. https://doi.org/10.1371/journal.pone.0055977
Kippenhan JS, Olsen RK, Mervis CB, Morris CA, Kohn P, Meyer-Lindenberg A, Berman KF (2005) Genetic contributions to human gyrification: sulcal morphometry in Williams syndrome. J Neurosci 25(34):7840–7846. https://doi.org/10.1523/jneurosci.1722-05.2005
Leong RL, Lo JC, Sim SK, Zheng H, Tandi J, Zhou J, Chee MW (2017) Longitudinal brain structure and cognitive changes over 8 years in an east asian cohort. NeuroImage 147:852–860. https://doi.org/10.1016/j.neuroimage.2016.10.016
Madan CR (2017) Advances in studying brain morphology: the benefits of open-access data. Front Hum Neurosci 11:405. https://doi.org/10.3389/fnhum.2017.00405
Chen B, Xu T, Zhou C, Wang L, Yang N, Wang Z et al (2015) Individual variability and test–retest reliability revealed by ten repeated resting-state brain scans over one month. PLoS ONE 10:e0144963. https://doi.org/10.1371/journal.pone.0144963
Madan CR, Kensinger EA (2017b) Test–retest reliability of brain morphology estimates. Brain Inform 4:107–121. https://doi.org/10.1007/s40708-016-0060-4
Marcus DS, Wang TH, Parker J, Csernansky JG, Morris JC, Buckner RL (2007) Open access series of imaging studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. J Cognit Neurosci 19:1498–1507. https://doi.org/10.1162/jocn.2007.19.9.1498
Madan CR, Kensinger EA (2017a) Age-related differences in the structural complexity of subcortical and ventricular structures. Neurobiol Aging 50:87–95. https://doi.org/10.1016/j.neurobiolaging.2016.10.023
Madan CR (2019) Shape-related characteristics of age-related differences in subcortical structures. Aging Mental Health 23:800–810. https://doi.org/10.1080/13607863.2017.1421613
Mennes M, Biswal BB, Castellanos FX, Milham MP (2013) Making data sharing work: the FCP/INDI experience. NeuroImage 82:683–691. https://doi.org/10.1016/j.neuroimage.2012.10.064
Kennedy DN, Haselgrove C, Riehl J, Preuss N, Buccigrossi R (2016) The NITRC image repository. NeuroImage 124:1069–1073. https://doi.org/10.1016/j.neuroimage.2015.05.074
Kennedy KM, Rodrigue KM, Bischof GN, Hebrank AC, Reuter-Lorenz PA, Park DC (2015) Age trajectories of functional activation under conditions of low and high processing demands: an adult lifespan fMRI study of the aging brain. NeuroImage 104:21–34. https://doi.org/10.1016/j.neuroimage.2014.09.056
Chan MY, Park DC, Savalia NK, Petersen SE, Wig GS (2014) Decreased segregation of brain systems across the healthy adult lifespan. Proc Natl Acad Sci USA 111:E4997–E5006. https://doi.org/10.1073/pnas.1415122111
Wei D, Zhuang K, Ai L, Chen Q, Yang W, Liu W et al (2018) Structural and functional brain scans from the cross-sectional southwest university adult lifespan dataset. Sci Data 5:180134. https://doi.org/10.1038/sdata.2018.134
Zuo X-N, Anderson JS, Bellec P, Birn RM, Biswal BB, Blautzik J et al (2014) An open science resource for establishing reliability and reproducibility in functional connectomics. Sci Data 1:140049. https://doi.org/10.1038/sdata.2014.49
Fischl B, Dale AM (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci USA 97:11050–11055. https://doi.org/10.1073/pnas.200033797
Schaer M, Cuadra MB, Schmansky N, Fischl B, Thiran J-P, Eliez S (2012) How to measure cortical folding from MR images: a step-by-step tutorial to compute local gyrification index. J Vis Exp 59:e3417. https://doi.org/10.3791/3417
Destrieux C, Fischl B, Dale A, Halgren E (2010) Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. NeuroImage 53:1–15. https://doi.org/10.1016/j.neuroimage.2010.06.010
Asendorpf J, Wallbott HG (1979) Maße der Beobachterübereinstimmung: ein systematischer Vergleich. Zeitschrift für Sozialpsychologie. 10:243–252
Bartko JJ (1966) The intraclass correlation coefficient as a measure of reliability. Psychol Rep 19:3–11. https://doi.org/10.2466/pr0.1966.19.1.3
Chen G, Taylor PA, Haller SP, Kircanski K, Stoddard J, Pine DS et al (2018) Intraclass correlation: improved modeling approaches and applications for neuroimaging. Hum Brain Mapp 39:1187–1206. https://doi.org/10.1002/hbm.23909
Hallgren KA (2012) Computing inter-rater reliability for observational data: an overview and tutorial. Tutor Quant Methods Psychol 8:23–34. https://doi.org/10.20982/tqmp.08.1.p023
Koo TK, Li MY (2016) A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med 15:155–163. https://doi.org/10.1016/j.jcm.2016.02.012
Rajaratnam N (1960) Reliability formulas for independent decision data when reliability data are matched. Psychometrika 25:261–271. https://doi.org/10.1007/bf02289730
Shrout PE, Fleiss JL (1979) Intraclass correlations: uses in assessing rater reliability. Psychol Bull 86:420–428. https://doi.org/10.1037/0033-2909.86.2.420
McGraw KO, Wong SP (1996) Forming inferences about some intraclass correlation coefficients. Psychol Methods 1:30–46. https://doi.org/10.1037/1082-989x.1.1.30
Cicchetti DV (1994) Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology. Psychol Assess 6:284–290. https://doi.org/10.1037/1040-3590.6.4.284
Kochunov P, Fox P, Lancaster J, Tan LH, Amunts K, Zilles K et al (2003) Localized morphological brain differences between english-speaking caucasians and chinese-speaking asians: new evidence of anatomical plasticity. NeuroReport 14(7):961–964. https://doi.org/10.1097/01.wnr.0000075417.59944.00
Longstreth WT, Arnold AM, Manolio TA, Burke GL, Bryan N, Jungreis CA et al (2000) Clinical correlates of ventricular and sulcal size on cranial magnetic resonance imaging of 3301 elderly people. Neuroepidemiology 19:30–42. https://doi.org/10.1159/000026235
Tang Y, Hojatkashani C, Dinov ID, Sun B, Fan L, Lin X et al (2010) The construction of a Chinese MRI brain atlas: a morphometric comparison study between Chinese and Caucasian cohorts. NeuroImage 51(1):33–41. https://doi.org/10.1016/j.neuroimage.2010.01.111
Walhovd KB, Westlye LT, Amlien I, Espeseth T, Reinvang I, Raz N et al (2011) Consistent neuroanatomical age-related volume differences across multiple samples. Neurobiol Aging 32:916–932. https://doi.org/10.1016/j.neurobiolaging.2009.05.013