Công nghệ Robot và Trí Tuệ Nhân Tạo trong Nội Soi Tiêu Hóa: Tổng Quan Cập Nhật Tài Liệu và Tình Hình Hiện Tại
Tóm tắt
Nội soi tiêu hóa bao gồm nhiều quy trình đa dạng đã có sự phát triển mạnh mẽ trong những thập kỷ qua. Công nghệ nội soi robot và trí tuệ nhân tạo đang mở rộng khả năng của các kỹ thuật truyền thống và sẽ đóng một vai trò quan trọng trong thực hành lâm sàng trong tương lai gần. Việc hiểu rõ các thiết bị và quy trình hiện có là một nhu cầu chưa được đáp ứng. Bài đánh giá này nhằm mục đích đánh giá các ứng dụng hiện tại và tương lai của các robot nội soi được phát triển gần đây nhất.
Mặc dù một vài thiết bị đã được chấp thuận cho ứng dụng lâm sàng, đa số các hệ thống robot và trí tuệ nhân tạo vẫn chưa trở thành một phần thiết yếu trong bộ dụng cụ nội soi hiện tại. Một số thiết bị đổi mới trong lĩnh vực nội soi và các hệ thống trí tuệ nhân tạo được thiết kế để thực hiện các quy trình phức tạp như cắt dưới niêm mạc nội soi, trong khi những thiết bị khác nhằm cải thiện các kỹ thuật chẩn đoán như nội soi đại tràng.
Đây là một bài đánh giá về công nghệ robot nội soi linh hoạt và các hệ thống trí tuệ nhân tạo, trình bày những thiết bị và hệ thống trí tuệ nhân tạo mới nhất đã được phê duyệt và đang thử nghiệm cho chẩn đoán và nội soi robot.
Từ khóa
Tài liệu tham khảo
Patel N, Darzi A, Teare J. The endoscopy evolution: ‘the superscope era’. Frontline Gastroenterol. 2015;6:101–7. https://doi.org/10.1136/flgastro-2014-100448.
Moura DTH, de Aihara H, Thompson CC. Robotic-assisted surgical endoscopy: a new era for endoluminal therapies. VideoGIE. 2019;4:399–402. https://doi.org/10.1016/j.vgie.2019.04.014.
Yeung BPM, Chiu PWY. Application of robotics in gastrointestinal endoscopy: a review. World J Gastroenterol. 2016;22:1811–25. https://doi.org/10.3748/wjg.v22.i5.1811.
Boškoski I, Costamagna G. Endoscopy robotics: current and future applications. Dig Endosc. 2019;31:119–24. https://doi.org/10.1111/den.13270.
https://www.endodrive.de/flyer-endodrive-engl.pdf. Published Year. Accessed 29 Apr 2020.
Pullens HJ, van der Stap N, Rozeboom ED, Schwartz MP, van der Heijden F, van Oijen MG, et al. Colonoscopy with robotic steering and automated lumen centralization: a feasibility study in a colon model. Endoscopy. 2016;48(3):286–90. https://doi.org/10.1055/s-0034-1392550.
Kume K, Sakai N, Ueda T. Development of a novel gastrointestinal endoscopic robot enabling complete remote control of all operations: endoscopic therapeutic robot system (ETRS). Gastroenterol Res Pract. 2019;2019:6909547. https://doi.org/10.1155/2019/6909547First study, on porcine stomachs, about a novel master-slave robot which enables a single endoscopist to complete endoscopic treatment, ESD, while seated at a console.
Kume K, Kuroki T, Shingai M, Harada M. Endoscopic submucosal dissection using the endoscopic operation robot. Endoscopy. 2012;44:E399–400. https://doi.org/10.1055/s-0032-1310251.
Kume K, Sakai N, Goto T. Development of a novel endoscopic manipulation system: the endoscopic operation robot ver.3. Endoscopy. 2015;47:815–9. https://doi.org/10.1055/s-0034-1391973.
Woo J, Choi JH, Seo JT, Kim TI, Yi BJ. Development of a robotic Colonoscopic manipulation system, using haptic feedback algorithm. Yonsei Med J. 2017;58:139–43. https://doi.org/10.3349/ymj.2017.58.1.139.
Li Y, Liu H, Hao S, Li H, Han J, Yang Y. Design and control of a novel gastroscope intervention mechanism with circumferentially pneumatic-driven clamping function: a novel GIM with circumferentially pneumatic-driven clamping function. Int J Med Robotics Comput Assist Surg. 2017;13:e1745. https://doi.org/10.1002/rcs.1745.
Kim BG, Choi HS, Park SH, Hong JH, Lee JM, Kim SH, et al. A pilot study of endoscopic submucosal dissection using an endoscopic assistive robot in a porcine stomach model. Gut Liver. 2019;13:402–8. https://doi.org/10.5009/gnl18370.
Ruiter J, Rozeboom E, van der Voort M, Bonnema M, Broeders I. Design and evaluation of robotic steering of a flexible endoscope [Internet]. In: 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob). Rome, Italy: IEEE; 2012. page 761–7 Available from: http://ieeexplore.ieee.org/document/6290272/. [cited 2020 Sep 5].
Rozeboom ED, Bastiaansen BA, de Vries ES, Dekker E, Fockens PA, Broeders IAMJ. Robotic-assisted flexible colonoscopy: preliminary safety and efficiency in humans. Gastrointest Endosc. 2016;83:1267–71. https://doi.org/10.1016/j.gie.2015.10.046.
Rozeboom ED, Broeders IA, Fockens P. Feasibility of joystick guided colonoscopy. J Robot Surg. 2015;9(3):173–8. https://doi.org/10.1007/s11701-015-0511-6.
https://www.accessdata.fda.gov/cdrh_docs/pdf16/K161791.pdf. Published Year. Accessed Aug 11, 2016.
Pfeffer J, Grinshpon R, Rex D, Levin B, Rösch T, Arber N, et al. The Aer-O-scope: proof of the concept of a pneumatic, skill-independent, self-propelling, self-navigating Colonoscope in a pig model. Endoscopy. 2006;38:144–8. https://doi.org/10.1055/s-2006-925089.
Gluck N, Melhem A, Halpern Z, Mergener K, Goldfarb S, Santo E. Su1709 Aer-O-scope Colonoscope system demonstrates efficacy and safety for colorectal Cancer screening in humans. Gastrointest Endosc. 2015;81:AB386. https://doi.org/10.1016/j.gie.2015.03.1558.
Striegel J, Jakobs R, Weickert U, Eickhoff A. Determining scope position during colonoscopy without use of ionizing radiation or magnetic imaging: the enhanced mapping ability of the NeoGuide endoscopy system. Surg Endosc. 2011;25:636–640.
Eickhoff A, Hartmann D, Riemann JF. Computer-assisted colonoscopy (the NeoGuide endoscopy system): results of the first human clinical trial (“PACE study”). Am J Gastroenterol. 2007;102:261–66.
https://www.accessdata.fda.gov/cdrh_docs/pdf7/K070622.pdf.
Cosentino F, Tumino E, Passoni GR, Morandi E, Capria A. Functional Evaluation of the Endotics System, a New Disposable Self-Propelled Robotic Colonoscope: in vitro tests and clinical trial. :11.
Tumino E, Sacco R, Bertini M, Bertoni M, Parisi G, Capria A. Endotics system vs colonoscopy for the detection of polyps. World J Gastroenterol. 2010;16:5452–6. https://doi.org/10.3748/wjg.v16.i43.5452.
Trecca A, Catalano F, Bella A, Borghini R. Robotic colonoscopy: efficacy, tolerability and safety. Preliminary clinical results from a pilot study. Surg Endosc. 2020;34:1442–50. https://doi.org/10.1007/s00464-019-07332-6.
Rösch T, Adler A, Pohl H, Wettschureck E, Koch M, Wiedenmann B, et al. A motor-driven single-use colonoscope controlled with a hand-held device: a feasibility study in volunteers. Gastrointest Endosc. 2008;67:1139–46. https://doi.org/10.1016/j.gie.2007.10.065.
Groth S, Rex DK, Rösch T, Hoepffner N. High Cecal intubation rates with a new computer-assisted Colonoscope: a feasibility study. Am J Gastroenterol. 2011;106:1075–80. https://doi.org/10.1038/ajg.2011.52.
Straulino F, Genthner A, Kiesslich R, Eickhoff A. Sa1938 colonoscopy with the sterile single use endoscope invendoscope sc210. Gastrointest Endosc. 2018;87:AB257. https://doi.org/10.1016/j.gie.2018.04.459.
https://www.accessdata.fda.gov/cdrh_docs/pdf17/K173085.pdf
Bernth JE, Arezzo A, Liu H. A novel robotic Meshworm with segment-bending anchoring for colonoscopy. IEEE Robot Autom Lett. 2017;2:1718–24. https://doi.org/10.1109/LRA.2017.2678540.
Shike M, Fireman Z, Eliakim R, Segol O, Sloyer A, Cohen LB, et al. Sightline ColonoSight system for a disposable, power-assisted, non-fiber-optic colonoscopy (with video). Gastrointest Endosc. 2008;68:701–10. https://doi.org/10.1016/j.gie.2007.12.062.
Dallemagne B, Marescaux J. The ANUBIS™ project. Minim Invasive Ther Allied Technol. 2010;19:257–61. https://doi.org/10.3109/13645706.2010.514741.
De Donno A, Zorn L, Zanne P, Nageotte F, de Mathelin M. Introducing STRAS: a new flexible robotic system for minimally invasive surgery [Internet]. In: 2013 IEEE International Conference on Robotics and Automation. Karlsruhe: IEEE; 2013. pp. 1213–20. Available from: http://ieeexplore.ieee.org/document/6630726/. [cited 2020 Sep 5].
2011 IEEE. International conference on robotics and automation. IEEE Robot Automat Mag. 2010;17:30. https://doi.org/10.1109/MRA.2010.937378.
Zorn L, Nageotte F, Zanne P, et al. A novel Telemanipulated robotic assistant for surgical endoscopy: preclinical application to ESD. IEEE Trans Biomed Eng. 2018;65(4):797–808. https://doi.org/10.1109/TBME.2017.2720739.
Mascagni P, Lim SG, Fiorillo C, Zanne P, Nageotte F, Zorn L, et al. Democratizing endoscopic submucosal dissection: single-operator fully robotic colorectal endoscopic submucosal dissection in a pig model. Gastroenterology. 2019;156:1569–1571.e2. https://doi.org/10.1053/j.gastro.2018.12.046.
Hwang M, Kwon D. K-FLEX: a flexible robotic platform for scar-free endoscopic surgery. Int J Med Robot. 2020;16. https://doi.org/10.1002/rcs.2078 Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/rcs.2078. [cited 2020 Sep 5].
Remacle M, Prasad VMN, Lawson G, Plisson L, Bachy V, Van der Vorst S. Transoral robotic surgery (TORS) with the Medrobotics Flex™ system: first surgical application on humans. Eur Arch Otorhinolaryngol. 2015;272(6):1451–5. https://doi.org/10.1007/s00405-015-3532-x.
Schuler PJ, Duvvuri U, Friedrich DT, Rotter N, Scheithauer MO, Hoffmann TK. First use of a computer-assisted operator-controlled flexible endoscope for transoral surgery: flexible oropharyngeal surgery. Laryngoscope. 2015;125:645–8. https://doi.org/10.1002/lary.24957.
Sethi N, Gouzos M, Padhye V, Ooi EH, Foreman A, Krishnan S, et al. Transoral robotic surgery using the Medrobotic Flex® system: the Adelaide experience. J Robot Surg. 2020;14:109–13. https://doi.org/10.1007/s11701-019-00941-2The study demonstrates, for the first time, the efficacy and safety of this new system for transoral robotic surgery.
Funk E, Goldenberg D, Goyal N. Demonstration of transoral robotic supraglottic laryngectomy and total laryngectomy in cadaveric specimens using the Medrobotics Flex system: Flex robotic laryngectomy. Head Neck. 2017;39:1218–25. https://doi.org/10.1002/hed.24746.
Paulo S. Robot-assisted endoscopic submucosal dissection versus conventional ESD for colorectal lesions: outcomes of a randomized pilot study in endoscopists without prior ESD experience (with video). Gastrointest Endosc. 2019;90:290–298
Turiani Hourneaux de Moura D, Aihara H, Jirapinyo P, et al. Robot-assisted endoscopic submucosal dissection versus conventional ESD for colorectal lesions: outcomes of a randomized pilot study in endoscopists without prior ESD experience (with video). Gastrointest Endosc. 2019;90(2):290–8. https://doi.org/10.1016/j.gie.2019.03.016Robotic esd seems to be better in terms of efficacy, complication, procedure time, mental and physical workload than conventional esd if practiced by inexperienced endoscopists.
https://www.accessdata.fda.gov/cdrh_docs/pdf16/K162330.pdf
Phee SJ, Reddy N, Chiu PWY, Rebala P, Rao GV, Wang Z, et al. Robot-assisted endoscopic submucosal dissection is effective in treating patients with early-stage gastric neoplasia. Clin Gastroenterol Hepatol. 2012;10:1117–21. https://doi.org/10.1016/j.cgh.2012.05.019.
Lomanto D, Wijerathne S, Ho LKY, Phee LSJ. Flexible endoscopic robot. Minim Invasive Ther Allied Technol. 2015;24:37–44. https://doi.org/10.3109/13645706.2014.996163.
Ho K-Y, Phee SJ, Shabbir A, Low SC, Huynh VA, Kencana AP, et al. Endoscopic submucosal dissection of gastric lesions by using a master and slave transluminal endoscopic robot (MASTER). Gastrointest Endosc. 2010;72:593–9. https://doi.org/10.1016/j.gie.2010.04.009.
Sun Z, Ang RY, Lim EW, Wang Z, Ho KY, Phee SJ. Enhancement of a master-slave robotic system for natural orifice. Transluminal Endoscopic Surgery. 2011;40:8.
Wang Z, Phee S, Lomanto D, Goel R, Rebala P, Sun Z, et al. Endoscopic submucosal dissection of gastric lesions by using a master and slave transluminal endoscopic robot: an animal survival study. Endoscopy. 2012;44:690–4. https://doi.org/10.1055/s-0032-1309404.
Chiu PW, Phee SJ, Bhandari P, et al. Enhancing proficiency in performing endoscopic submucosal dissection (ESD) by using a prototype robotic endoscope. Endosc Int Open. 2015;3(5):E439–42. https://doi.org/10.1055/s-0034-1393178.
Chiu PW, Phee SJ, Wang Z, et al. Feasibility of full-thickness gastric resection using master and slave transluminal endoscopic robot and closure by overstitch: a preclinical study. Surg Endosc. 2014;28(1):319–24. https://doi.org/10.1007/s00464-013-3149-3.
Takeshita N, Ho KY, Phee SJ, Wong J, Chiu PW. Feasibility of performing esophageal endoscopic submucosal dissection using master and slave transluminal endoscopic robot. Endoscopy. 2017;49(S 01):E27–E28. https://doi.org/10.1055/s-0042-121486.
Wong JYY, Ho KY. Robotics for advanced therapeutic colonoscopy. Clin Endosc. 2018;51:552–7. https://doi.org/10.5946/ce.2018.089.
Cauche N, Hiernaux M, Chau A, Huberty V, Ibrahim M, Delchambre A, et al. Endomina : the Endoluminal universal robotized triangulation system: description and preliminary results in isolated pig stomach. Gastrointest Endosc. 2013;77(5S):AB204.
Huberty V, Machytka E, Boškoski I, Barea M, Costamagna G, Deviere J. Endoscopic gastric reduction with an endoluminal suturing device: a multicenter prospective trial with 1-year follow-up. Endoscopy. 2018;50(12):1156–62. https://doi.org/10.1055/a-0630-1224.
Huberty V, Ibrahim M, Hiernaux M, Chau A, Dugardeyn S, Devière J. Safety and feasibility of an endoluminal-suturing device for endoscopic gastric reduction (with video). Gastrointest Endosc. 2017;85(4):833–7. https://doi.org/10.1016/j.gie.2016.08.007.
Horie Y, Yoshio T, Aoyama K, et al. Diagnostic outcomes of esophageal cancer by artificial intelligence using convolutional neural networks. Gastrointest Endosc. 2019;89(1):25–32.
de Groof AJ, Struyvenberg MR, van der Putten J, et al. Deep-learning system detects neoplasia in patients with Barrett’s esophagus with higher accuracy than endoscopists in a multistep training and validation study with benchmarking. Gastroenterology. 2020;158:915–29.
Guo L, Xiao X, Wu C, et al. Real-time automated diagnosis of precancerous lesions and early esophageal squamous cell carcinoma using a deep learning model (with videos). Gastrointest Endosc. 2020;91:41–51.
Nakashima H, Kawahira H, Kawachi H, Sakaki N. Artificial intelligence diagnosis of helicobacter pylori infection using blue laser imaging- bright and linked color imaging: a single-center prospective study. Ann Gastroenterol. 2018;31(4):462–8.
Kanesaka T, Lee TC, Uedo N, et al. Computer-aided diagnosis for identifying and delineating early gastric cancers in magnifying narrow-band imaging. Gastrointest Endosc. 2018;87(5):1339–44.
Zhu Y, Wang QC, Xu MD, et al. Application of convolutional neural network in the diagnosis of the invasion depth of gastric cancer based on conventional endoscopy. Gastrointest Endosc. 2019;89(4):806–815.e1 This new CNN-CAD system can determine the invasion depth of gastric cancer with high accuracy and specificity. This aspect is certainly crucial to reduce unnecessary gastrectomies.
Hassan AR, Haque MA. Computer-aided gastrointestinal hemorrhage detection in wireless capsule endoscopy videos. Comput Methods Prog Biomed. 2015;122:341–53. https://doi.org/10.1016/j.cmpb.2015.09.005.
Jia X, Meng MQ. A deep convolutional neural network for bleeding detection in wireless capsule endoscopy images. Conf Proc Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Conf. 2016;2016:639–42. https://doi.org/10.1109/embc.2016.7590783.
Aoki T, Yamada A, Aoyama K, et al. Automatic detection of erosions and ulcerations in wireless capsule endoscopy images based on a deep con- volutional neural network. Gastrointest Endosc. 2019;89:357–63.
Klang E, Barash Y, Margalit RY, et al. Deep learning algorithms for auto- mated detection of Crohn’s disease ulcers by video capsule endoscopy. Gastrointest Endosc. 2020;91:606–1.
Cazacu IM, Udristoiu A, Gruionu LG, et al. Artificial intelligence in pancreatic cancer: toward precision diagnosis. Endosc Ultrasound. 2019;8:357–9.
Ruffle JK, Farmer AD, Aziz Q. Artificial intelligence-assisted gastroenterology promises and pitfalls. Am J Gastroenterol. 2019;114:422–8.
Wang P, Berzin TM, Glissen Brown JR, et al. Real-time automatic detection system increases colonoscopic polyp and adenoma detection rates: a prospective randomised controlled study. Gut. 2019;68:1813–9 First prospective randomised controlled trial examining an automatic polyp detection during colonoscopy and shows an increase of ADR. Automatic polyp and adenoma detection could be the future of diagnostic colonoscopy in order to achieve stable high adenoma detection rates.
Ito N, Kawahira H, Nakashima H, et al. Endoscopic diagnostic support system for cT1b colorectal cancer using deep learning. Oncology. 2019;96:44–50.
Zhou J, Wu L, Wan X, et al. A novel artificial intelligence system for the assessment of bowel preparation (with video). Gastrointest Endosc. 2020;91:428–35.
Gong D, Wu L, Zhang J, et al. Detection of colorectal adenomas with a real-time computer-aided system (ENDOANGEL): a rando- mised controlled study. Lancet Gastroenterol Hepatol. 2020;5:352–61.
Hassan C, Wallace MB, Sharma P, et al. New artificial intelligence system: first validation study versus experienced endoscopists for Colo-rectal polyp detection. Gut. 2020;69:799–800.
Repici A, Badalamenti M, Maselli R, et al. Efficacy of real-time computer-aided detection of colorectal neoplasia in a randomized trial. Gastroenterology. 2020;159(2):512–520.e7. https://doi.org/10.1053/j.gastro.2020.04.062This multicenter, randomized trial, demonstrates that including CADe in real-time colonoscopy significantly increases ADR and adenomas detected per colonoscopy without increasing withdrawal time.
Byrne MF, Chapados N, Soudan F, et al. Real-time differentiation of adenomatous and hyperplastic diminutive colorectal polyps during analysis of unaltered videos of standard colonoscopy using a deep learning model. Gut. 2019;68(1):94–100.
Mori Y, Kudo SE, Misawa M, et al. Real-time use of artificial intelligence in identification of diminutive polyps during colonoscopy: a prospective study. Ann Intern Med. 2018;169(6):357–66.
Rex DK, Kahi C, O'Brien M, et al. The American Society for Gastrointestinal Endoscopy PIVI (preservation and incorporation of valuable endoscopic innovations) on real-time endoscopic assessment of the histology of diminutive colorectal polyps. Gastrointest Endosc. 2011;73(3):419–22.
Ozawa T, Ishihara S, Fujishiro M, et al. Novel computer-assisted diagnosis system for endoscopic disease activity in patients with ulcerative colitis. Gastrointest Endosc. 2019;89(2):416–421.e1.
Maeda Y, Kudo SE, Mori Y, et al. Fully automated diagnostic system with artificial intelligence using endocytoscopy to identify the pres- ence of histologic inflammation associated with ulcerative colitis (with video). Gastrointest Endosc. 2019;89(2):408–15.