Risk factors associated with intracranial hemorrhage in neonates with persistent pulmonary hypertension on ECMO
Tóm tắt
Up to 40% of infants with persistent pulmonary hypertension (PPHN) remains refractory to conventional therapies, and extracorporeal membrane oxygenation (ECMO) is offered as an effective support for this group. However, ECMO is a highly invasive and risky procedure with devastating complications such as intracranial hemorrhage (ICH). In this study, we aimed to determine the risk factors for ICH in infants with PPHN. A case-control study of patients admitted to the pediatric intensive care unit (PICU) with PPHN requiring ECMO support was conducted. The study was carried out at a 25-bed PICU in large urban tertiary care children’s hospital. A total number of 32 subjects were studied. Patients with and without ICH during ECMO were evaluated for activated clotting time (ACT), heparin dosing, platelet count, coagulation profile such as activated partial thromboplastin time (aPTT), prothrombin time (PT), international normalized ratio (INR), fibrinogen level, vital signs including heart rate and mean arterial pressure (MAP), transfusion history, gestational age, and severity of pre-ECMO illness as possible risk factors. Low fibrinogen level (115 ± 13 mg/dl) and low platelet counts (37.4 ± 18.3 Thousand/μl) were associated with higher incidence of ICH (p = 0.009 and p = 0.005, respectively). Elevated MAP (69 ± 4.34 mmHg) was also noticed in ICH patients (p = 0.006). Results demonstrated that low fibrinogen level and low platelet count were associated with ICH in PPHN patients on ECMO. While on ECMO support, maintaining fibrinogen and platelet counts within normal ranges seems crucial to prevent ICH in PPHN patients. This is the first report identifying low fibrinogen level among the risk factors for ICH in infants with PPHN on ECMO support.
Tài liệu tham khảo
Rehder KJ, Turner DA, Cheifetz IM. Extracorporeal membrane oxygenation for neonatal and pediatric respiratory failure: an evidence-based review of the past decade (2002–2012). Pediatr Crit Care Med. 2013;14(9):851–61.
Keckler SJ, Laituri CA, Ostlie DJ, St Peter SD. A review of venovenous and venoarterial extracorporeal membrane oxygenation in neonates and children. Eur J Pediatr Surg. 2010;20(1):1–4.
Walsh-Sukys MC, Tyson JE, Wright LL, Bauer CR, Korones SB, Stevenson DK, et al. Persistent pulmonary hypertension of the newborn in the era before nitric oxide: practice variation and outcomes. Pediatrics. 2000;105(1 Pt 1):14–20.
Delaney C, Cornfield DN. Risk factors for persistent pulmonary hypertension of the newborn. Pulm Circ. 2012;2(1):15–20.
Neonatal Inhaled Nitric Oxide Study G. Inhaled nitric oxide in full-term and nearly full-term infants with hypoxic respiratory failure. N Engl J Med. 1997;336(9):597–604.
Hardart GE, Fackler JC. Predictors of intracranial hemorrhage during neonatal extracorporeal membrane oxygenation. J Pediatr. 1999;134(2):156–9.
Khaja WA, Bilen O, Lukner RB, Edwards R, Teruya J. Evaluation of heparin assay for coagulation management in newborns undergoing ECMO. Am J Clin Pathol. 2010;134(6):950–4.
ELSO. Extracorporeal Life Support Organization guidelines for ECMO centers. 2014. http://www.elso.org/Resources/Guidelines.aspx
Zwischenberger JB, Nguyen TT, Upp Jr JR, Bush PE, Cox Jr CS, Delosh T, et al. Complications of neonatal extracorporeal membrane oxygenation. Collective experience from the Extracorporeal Life Support Organization. J Thorac Cardiovasc Surg. 1994;107(3):838–48. discussion 848-839.
Stallion A, Cofer BR, Rafferty JA, Ziegler MM, Ryckman FC. The significant relationship between platelet count and haemorrhagic complications on ECMO. Perfusion. 1994;9(4):265–9.
Hirthler MA, Blackwell E, Abbe D, Doe-Chapman R, LeClair SC, Goldthorn J, et al. Coagulation parameter instability as an early predictor of intracranial hemorrhage during extracorporeal membrane oxygenation. J Pediatr Surg. 1992;27(1):40–3.
Kasirajan V, Smedira NG, McCarthy JF, Casselman F, Boparai N, McCarthy PM. Risk factors for intracranial hemorrhage in adults on extracorporeal membrane oxygenation. Eur J Cardiothorac Surg. 1999;15(4):508–14.
Friedman DF, Montenegro LM. Extracorporeal membrane oxygenation and cardiopulmonary bypass (Chapter 17). In: Hillyer CD, Strauss RG, Luban NLC, editors. 'Handbook of Pediatric Transfusion Medicine'. San Diego: Elsevier Academic Press; 2004. p. 181–9.
Dela Cruz TV, Stewart DL, Winston SJ, Weatherman KS, Phelps JL, Mendoza JC. Risk factors for intracranial hemorrhage in the extracorporeal membrane oxygenation patient. J Perinatol. 1997;17(1):18–23.
Pasternak JF, Groothuis DR. Autoregulation of cerebral blood flow in the newborn beagle puppy. Biol Neonate. 1985;48(2):100–9.
Karimova A, Brown K, Ridout D, Beierlein W, Cassidy J, Smith J, et al. Neonatal extracorporeal membrane oxygenation: practice patterns and predictors of outcome in the UK. Arch Dis Child Fetal Neonatal Ed. 2009;94(2):F129–32.
Hervey-Jumper SL, Annich GM, Yancon AR, Garton HJ, Muraszko KM, Maher CO. Neurological complications of extracorporeal membrane oxygenation in children. J Neurosurg Pediatr. 2011;7(4):338–44.
Cengiz P, Seidel K, Rycus PT, Brogan TV, Roberts JS. Central nervous system complications during pediatric extracorporeal life support: incidence and risk factors. Crit Care Med. 2005;33(12):2817–24.
Nguyen T, Musick M, Teruya J. Anticoagulation monitoring during extracorporeal membrane oxygenation: is anti-factor Xa assay (heparin level) a better test?*. Pediatr Crit Care Med. 2014;15(2):178–9.
Bembea MM, Annich G, Rycus P, Oldenburg G, Berkowitz I, Pronovost P. Variability in anticoagulation management of patients on extracorporeal membrane oxygenation: an international survey. Pediatr Crit Care Med. 2013;14(2):e77–84.