Risk SNP in a transcript of RP11-638I2.4 increases lncRNA–YY1 interaction and pancreatic cancer susceptibility

Fühner-Wieland's Sammlung von Vergiftungsfällen - Tập 97 - Trang 2799-2812 - 2023
Ming Zhang1, Yanmin Li1, Fuwei Zhang1, Hui Geng2, Yimin Cai1, Zequn Lu1, Bin Li2, Caibo Ning1, Wenzhuo Wang1, Haijie Li3, Jianbo Tian2,4,5, Ying Zhu2,5, Xiaoping Miao1,2,4,5
1Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health (Ministry of Education), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
2Department of Epidemiology and Biostatistics, School of Public Health, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
3Department of Gastrointestinal Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
4Department of Radiation Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
5Department of Gastrointestinal OncologyTaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China

Tóm tắt

Tens of thousands of long non-coding RNAs (lncRNAs) have been identified through RNA-seq analysis, but the biological and pathological significance remains unclear. By integrating the genome-wide lncRNA data with a cross-ancestry meta-analysis of PDAC GWASs, we depicted a comprehensive atlas of pancreatic ductal adenocarcinoma (PDAC)-associated lncRNAs, containing 1,204 lncRNA (445 novel lncRNAs and 759 GENCODE annotated lncRNAs) and 4,368 variants. Furthermore, we found that PDAC-associated lncRNAs could function by altering chromatin activity, transcription factors, and RNA-binding proteins binding affinity. Importantly, genetic variants linked to PDAC are preferentially found at PDAC-associated lncRNA regions, supporting the biological and clinical relevance of PDAC-associated lncRNAs. Finally, we prioritized a novel transcript (MICT00000110172.1) of RP11-638I2.4 as a potential tumor promoter. MICT00000110172.1 is able to reinforce the interaction with YY1, which could reverse the effect of YY1 on pancreatic cancer cell cycle arrest to promote the pancreatic cancer growth. G > A change at rs2757535 in the second exon of MICT00000110172.1 induces a spatial structural change and creates a target region for YY1 binding, which enforces the effect of MICT00000110172.1 in an allele-specific manner, and thus confers susceptibility to tumorigenesis. In summary, our results extend the repertoire of PDAC-associated lncRNAs that could act as a starting point for future functional explorations, and the identification of lncRNA‐based target therapy.

Tài liệu tham khảo

Bertani S, Sauer S, Bolotin E, Sauer F (2011) The noncoding RNA Mistral activates Hoxa6 and Hoxa7 expression and stem cell differentiation by recruiting MLL1 to chromatin. Mol Cell 43(6):1040–1046. https://doi.org/10.1016/j.molcel.2011.08.019 Chen Q, Yang C, Chen L et al (2019a) YY1 targets tubulin polymerisation-promoting protein to inhibit migration, invasion and angiogenesis in pancreatic cancer via p38/MAPK and PI3K/AKT pathways. Br J Cancer 121(11):912–921. https://doi.org/10.1038/s41416-019-0604-5 Chen Q, Zhang JJ, Ge WL et al (2019b) YY1 inhibits the migration and invasion of pancreatic ductal adenocarcinoma by downregulating the FER/STAT3/MMP2 signaling pathway. Cancer Lett 463:37–49. https://doi.org/10.1016/j.canlet.2019.07.019 Chen Q, Shen P, Ge WL et al (2021) Roundabout homolog 1 inhibits proliferation via the YY1-ROBO1-CCNA2-CDK2 axis in human pancreatic cancer. Oncogene 40(15):2772–2784. https://doi.org/10.1038/s41388-021-01741-5 Consortium EP (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489(7414):57–74. https://doi.org/10.1038/nature11247 Das S, Forer L, Schonherr S et al (2016) Next-generation genotype imputation service and methods. Nat Genet 48(10):1284–1287. https://doi.org/10.1038/ng.3656 Derrien T, Johnson R, Bussotti G et al (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22(9):1775–1789. https://doi.org/10.1101/gr.132159.111 Dimitrakopoulos C, Vrugt B, Flury R et al (2019) Identification and validation of a biomarker signature in patients with resectable pancreatic cancer via genome-wide screening for functional genetic variants. JAMA Surg 154(6):e190484. https://doi.org/10.1001/jamasurg.2019.0484 Dykes IM, Emanueli C (2017) Transcriptional and post-transcriptional gene regulation by long non-coding RNA. Geno Prot Bioinform 15(3):177–186. https://doi.org/10.1016/j.gpb.2016.12.005 Ge WL, Chen Q, Meng LD et al (2020) The YY1/miR-548t-5p/CXCL11 signaling axis regulates cell proliferation and metastasis in human pancreatic cancer. Cell Death Dis 11(4):294. https://doi.org/10.1038/s41419-020-2475-3 Genomes Project, Abecasis GR, Auton A et al (2012) An integrated map of genetic variation from 1,092 human genomes. Nature 491(7422):56–65. https://doi.org/10.1038/nature11632 Gibb EA, Brown CJ, Lam WL (2011) The functional role of long non-coding RNA in human carcinomas. Mol Cancer 10:38. https://doi.org/10.1186/1476-4598-10-38 Guo Y, He J, Zhao S et al (2014) Illumina human exome genotyping array clustering and quality control. Nat Protoc 9(11):2643–2662. https://doi.org/10.1038/nprot.2014.174 Hon CC, Ramilowski JA, Harshbarger J et al (2017) An atlas of human long non-coding RNAs with accurate 5’ ends. Nature 543(7644):199–204. https://doi.org/10.1038/nature21374 Huang W, Loganantharaj R, Schroeder B, Fargo D, Li L (2013) PAVIS: a tool for Peak annotation and visualization. Bioinformatics 29(23):3097–3099. https://doi.org/10.1093/bioinformatics/btt520 Iyer MK, Niknafs YS, Malik R et al (2015) The landscape of long noncoding RNAs in the human transcriptome. Nat Genet 47(3):199–208. https://doi.org/10.1038/ng.3192 Liu D, Zhang J, Wu Y et al (2018) YY1 suppresses proliferation and migration of pancreatic ductal adenocarcinoma by regulating the CDKN3/MdM2/P53/P21 signaling pathway. Int J Cancer 142(7):1392–1404. https://doi.org/10.1002/ijc.31173 Loh PR, Danecek P, Palamara PF et al (2016) Reference-based phasing using the Haplotype Reference Consortium panel. Nat Genet 48(11):1443–1448. https://doi.org/10.1038/ng.3679 Mizrahi JD, Surana R, Valle JW, Shroff RT (2020) Pancreatic cancer. Lancet 395(10242):2008–2020. https://doi.org/10.1016/S0140-6736(20)30974-0 Perez-Ortin JE, Alepuz P, Chavez S, Choder M (2013) Eukaryotic mRNA decay: methodologies, pathways, and links to other stages of gene expression. J Mol Biol 425(20):3750–3775. https://doi.org/10.1016/j.jmb.2013.02.029 Petersen GM, Amundadottir L, Fuchs CS et al (2010) A genome-wide association study identifies pancreatic cancer susceptibility loci on chromosomes 13q221, 1q321 and 5p1533. Nat Genet 42(3):224–228. https://doi.org/10.1038/ng.522 Purcell S, Neale B, Todd-Brown K et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81(3):559–575. https://doi.org/10.1086/519795 Qian X, Zhao J, Yeung PY, Zhang QC, Kwok CK (2019) Revealing lncRNA Structures and Interactions by Sequencing-Based Approaches. Trends Biochem Sci 44(1):33–52. https://doi.org/10.1016/j.tibs.2018.09.012 Slack FJ, Chinnaiyan AM (2019) The role of Non-coding RNAs in oncology. Cell 179(5):1033–1055. https://doi.org/10.1016/j.cell.2019.10.017 Uszczynska-Ratajczak B, Lagarde J, Frankish A, Guigo R, Johnson R (2018) Towards a complete map of the human long non-coding RNA transcriptome. Nat Rev Genet 19(9):535–548. https://doi.org/10.1038/s41576-018-0017-y Wang KC, Yang YW, Liu B et al (2011) A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 472(7341):120–124. https://doi.org/10.1038/nature09819 Wang C, Li Y, Yan S et al (2020) Interactome analysis reveals that lncRNA HULC promotes aerobic glycolysis through LDHA and PKM2. Nat Commun 11(1):3162. https://doi.org/10.1038/s41467-020-16966-3 Wang H, Li J, Wang S et al (2021) Contribution of structural accessibility to the cooperative relationship of TF-lncRNA in myopia. Brief Bioinform. https://doi.org/10.1093/bib/bbab082 Washietl S, Kellis M, Garber M (2014) Evolutionary dynamics and tissue specificity of human long noncoding RNAs in six mammals. Genome Res 24(4):616–628. https://doi.org/10.1101/gr.165035.113 Wong CH, Lou UK, Fung FK et al (2022) CircRTN4 promotes pancreatic cancer progression through a novel CircRNA-miRNA-lncRNA pathway and stabilizing epithelial-mesenchymal transition protein. Mol Cancer 21(1):10. https://doi.org/10.1186/s12943-021-01481-w Wu C, Miao X, Huang L et al (2011) Genome-wide association study identifies five loci associated with susceptibility to pancreatic cancer in Chinese populations. Nat Genet 44(1):62–66. https://doi.org/10.1038/ng.1020 Xu F, Huang M, Chen Q et al (2021) LncRNA HIF1A-as1 promotes gemcitabine resistance of pancreatic cancer by enhancing glycolysis through modulating the AKT/YB1/HIF1alpha pathway. Cancer Res 81(22):5678–5691. https://doi.org/10.1158/0008-5472.CAN-21-0281 Zhang JJ, Zhu Y, Xie KL et al (2014) Yin Yang-1 suppresses invasion and metastasis of pancreatic ductal adenocarcinoma by downregulating MMP10 in a MUC4/ErbB2/p38/MEF2C-dependent mechanism. Mol Cancer 13:130. https://doi.org/10.1186/1476-4598-13-130 Zhang JJ, Zhu Y, Zhang XF et al (2017) Yin Yang-1 suppresses pancreatic ductal adenocarcinoma cell proliferation and tumor growth by regulating SOX2OT-SOX2 axis. Cancer Lett 408:144–154. https://doi.org/10.1016/j.canlet.2017.08.032 Zheng J, Huang X, Tan W et al (2016) Pancreatic cancer risk variant in LINC00673 creates a miR-1231 binding site and interferes with PTPN11 degradation. Nat Genet 48(7):747–757. https://doi.org/10.1038/ng.3568 Zhou C, Yi C, Yi Y et al (2020) LncRNA PVT1 promotes gemcitabine resistance of pancreatic cancer via activating Wnt/beta-catenin and autophagy pathway through modulating the miR-619-5p/Pygo2 and miR-619-5p/ATG14 axes. Mol Cancer 19(1):118. https://doi.org/10.1186/s12943-020-01237-y