Ripeness Classification of Astringent Persimmon Using Hyperspectral Imaging Technique

Springer Science and Business Media LLC - Tập 7 Số 5 - Trang 1371-1380 - 2014
Xuan Wei1, Fei Liu1, Zhengjun Qiu1, Yongni Shao1, Yong He1
1College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Araújo, M. C. U., Saldanha, T. C. B., Galvão, R. K. H., Yoneyama, T., Chame, H. C., & Visani, V. (2001). The successive projections algorithm for variable selection in spectroscopic multicomponent analysis. Chemometrics and Intelligent Laboratory Systems, 57(2), 65–73.

Baraldi, A., & Parmiggiani, F. (1995). An investigation of the textural characteristics associated with gray level cooccurrence matrix statistical parameters. Geoscience and Remote Sensing, IEEE Transactions on, 33(2), 293–304.

Borin, A., Ferrão, M. F., Mello, C., Maretto, D. A., & Poppi, R. J. (2006). Least-squares support vector machines and near infrared spectroscopy for quantification of common adulterants in powdered milk. Analytica Chimica Acta, 579(1), 25–32.

Cen H., Lu R., Mendoza F.A. & Ariana D.P. (2011). Peach maturity/quality assessment using hyperspectral imaging-based spatially resolved technique. In: Proc. SPIE 8027, Sensing for agriculture and food quality and safety III, 80270L, 02 June 2011, Bellingham, USA.

Clark, C. J., & MacFall, J. S. (2003). Quantitative magnetic resonance imaging of ‘Fuyu’ persimmon fruit during development and ripening. Magnetic Resonance Imaging, 21(6), 679–685.

Chauchard, F., Cogdill, R., Roussel, S., Roger, J. M., & Bellon-Maurel, V. (2004). Application of LS-SVM to non-linear phenomena in NIR spectroscopy: development of a robust and portable sensor for acidity prediction in grapes. Chemometrics and Intelligent Laboratory Systems, 71(2), 141–150.

De Maesschalck, R., Candolfi, A., Massart, D. L., & Heuerding, S. (1999). Decision criteria for soft independent modelling of class analogy applied to near infrared data. Chemometrics and Intelligent Laboratory Systems, 47(1), 65–77.

Ebert, G., & Gross, J. (1985). Carotenoid changes in the peel of ripening persimmon (Diospyros kaki) cv Triumph. Phytochemistry, 24(1), 29–32.

Elmasry, G., Kamruzzaman, M., Sun, D.-W., & Allen, P. (2012). Principles and applications of hyperspectral imaging in quality evaluation of agro-food products: a review. Critical Reviews in Food Science and Nutrition, 52(11), 999–1023.

ElMasry, G., Wang, N., ElSayed, A., & Ngadi, M. (2007). Hyperspectral imaging for nondestructive determination of some quality attributes for strawberry. Journal of Food Engineering, 81(1), 98–107.

Forbus, W. R., Payne, J. A., & Senter, S. D. (1991). Nondestructive evaluation of Japanese persimmon maturity by delayed light emission. Journal of Food Science, 56(4), 985–988.

Gadelmawla, E. S. (2004). A vision system for surface roughness characterization using the gray level co-occurrence matrix. NDT & E International, 37(7), 577–588.

Glew, R., Ayaz, F., Millson, M., Huang, H. S., Chuang, L. T., Sanz, C., & Golding, J. (2005). Changes in sugars, acids and fatty acids in naturally parthenocarpic date plum persimmon (Diospyros lotus L.) fruit during maturation and ripening. European Food Research and Technology, 221(1–2), 113–118.

Golic, M., Walsh, K., & Lawson, P. (2003). Short-wavelength near-infrared spectra of sucrose, glucose, and fructose with respect to sugar concentration and temperature. Applied Spectroscopy, 57(2), 139–145.

Gomez, W., Pereira, W. C. A., & Infantosi, A. F. C. (2012). Analysis of co-occurrence texture statistics as a function of gray-level quantization for classifying breast ultrasound. IEEE Transactions On Medical Imaging, 31(10), 1889–1899.

Gowen, A. A., O’Donnell, C. P., Cullen, P. J., Downey, G., & Frias, J. M. (2007). Hyperspectral imaging—an emerging process analytical tool for food quality and safety control. Trends in Food Science and Technology, 18(12), 590–598.

Haaland, D. M., & Thomas, E. V. (1988). Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information. Analytical Chemistry, 60(11), 1193–1202.

Haralick, R. M., Shanmugam, K., & Dinstein, I. H. (1973). Textural features for image classification. Systems Man and Cybernetics IEEE Transactions on, SMC-3(6), 610–621.

Huang, M., Zhu, Q., Wang, B., & Lu, R. (2012). Analysis of hyperspectral scattering images using locally linear embedding algorithm for apple mealiness classification. Computers and Electronics in Agriculture, 89, 175–181.

Kato, K. (1990). Astringency removal and ripening in persimmmons treated with ethanol and ethylene. American Society for Horticultural Science Alexandria, 25(2), 205–207.

Kader, A. A. (1999). Fruit maturity, ripening, and quality relationships. Leuven: International Society for Horticultural Science.

Kamruzzaman, M., Barbin, D., ElMasry, G., Sun, D.-W., & Allen, P. (2012). Potential of hyperspectral imaging and pattern recognition for categorization and authentication of red meat. Innovative Food Science & Emerging Technologies, 16, 316–325.

Kamruzzaman, M., Sun, D.-W., ElMasry, G., & Allen, P. (2013). Fast detection and visualization of minced lamb meat adulteration using NIR hyperspectral imaging and multivariate image analysis. Talanta, 103, 130–136.

Li, X. L., Nie, P. C., Qiu, Z. J., & He, Y. (2011). Using wavelet transform and multi-class least square support vector machine in multi-spectral imaging classification of Chinese famous tea. Expert Systems with Applications, 38(9), 11149–11159.

Liu, F., Jiang, Y. H., & He, Y. (2009). Variable selection in visible/near infrared spectra for linear and nonlinear calibrations: a case study to determine soluble solids content of beer. Analytica Chimica Acta, 635(1), 45–52.

Lleo, L., Roger, J. M., Herrero-Langreo, A., Diezma-Iglesias, B., & Barreiro, P. (2011). Comparison of multispectral indexes extracted from hyperspectral images for the assessment of fruit ripening. Journal of Food Engineering, 104(4), 612–620.

Lorente, D., Aleixos, N., Gómez-Sanchis, J., Cubero, S., García-Navarrete, O. L., & Blasco, J. (2012). Recent advances and applications of hyperspectral imaging for fruit and vegetable quality assessment. Food and Bioprocess Technology, 5(4), 1121–1142.

Mallavadhani, U. V., Panda, A. K., & Rao, Y. R. (1998). Pharmacology and chemotaxonomy of diospyros. Phytochemistry, 49(4), 901–951.

Mendoza, F., Lu, R., Ariana, D., Cen, H., & Bailey, B. (2011). Integrated spectral and image analysis of hyperspectral scattering data for prediction of apple fruit firmness and soluble solids content. Postharvest Biology and Technology, 62(2), 149–160.

Pontes, M. J. C., Galvão, R. K. H., Araújo, M. C. U., Moreira, P. N. T., Neto, O. D. P., José, G. E., & Saldanha, T. C. B. (2005). The successive projections algorithm for spectral variable selection in classification problems. Chemometrics and Intelligent Laboratory Systems, 78(1–2), 11–18.

Qin, J., & Lu, R. (2008). Measurement of the optical properties of fruits and vegetables using spatially resolved hyperspectral diffuse reflectance imaging technique. Postharvest Biology and Technology, 49(3), 355–365.

Rajkumar, P., Wang, N., Eimasry, G., Raghavan, G. S. V., & Gariepy, Y. (2012). Studies on banana fruit quality and maturity stages using hyperspectral imaging. Journal of Food Engineering, 108(1), 194–200.

Semmelmeyer, & Ernst. (2006). OECD guidance on objective testing to determine the ripeness of fruit (Vol. 14). Skierniewice: Research Institute of Pomology and Floriculture.

Suykens, J. A. K., & Vandewalle, J. (1999). Least squares support vector machine classifiers. Neural Processing Letters, 9(3), 293–300.

Taniwaki, M., Hanada, T., & Sakurai, N. (2009). Postharvest quality evaluation of “Fuyu” and “Taishuu” persimmons using a nondestructive vibrational method and an acoustic vibration technique. Postharvest Biology and Technology, 51(1), 80–85.

Telis, V. R. N., Gabas, A. L., Menegalli, F. C., & Telis-Romero, J. (2000). Water sorption thermodynamic properties applied to persimmon skin and pulp. Thermochimica Acta, 343(1–2), 49–56.

Tournier, C., Grass, M., Zope, D., Salles, C., & Bertrand, D. (2012). Characterization of bread breakdown during mastication by image texture analysis. Journal of Food Engineering, 113(4), 615–622.

Wu, W., Mallet, Y., Walczak, B., Penninckx, W., Massart, D. L., Heuerding, S., & Erni, F. (1996). Comparison of regularized discriminant analysis linear discriminant analysis and quadratic discriminant analysis applied to NIR data. Analytica Chimica Acta, 329(3), 257–265.

Yamada M., Giordani E. & Yonemori K. (2012). Persimmon. In M. L. Badenes & D. H. Byrne (Eds.), Fruit Breeding, vol. 8 (pp. 663–693). New York: Springer.

Yamazaki, T., & Suzuki, K. (1980). Colour charts: useful guide to evaluate fruit maturity. 1. Colorimetric specifications of colour charts for Japanese pear, apple, peach, grape, persimmon, and citrus fruits. Bulletin of the Fruit Tree Research Station A, 7, 19–44.

Yang, X., Tridandapani, S., Beitler, J. J., Yu, D. S., Yoshida, E. J., Curran, W. J., & Liu, T. (2012). Ultrasound GLCM texture analysis of radiation-induced parotid-gland injury in head-and-neck cancer radiotherapy: an in vivo study of late toxicity. Medical Physics, 39(9), 5732–5739.

Zhang, P., Li, J. K., Meng, X. J., Zhang, P., Wang, B. G., & Xiao, Y. F. (2011a). Nondestructive determination of soluble solid content in Mopan persimmon by visible and near-infrared diffuse reflection spectroscopy. Food Science, 6, 191–194.

Zhang, P., Li, J. K., Meng, X. J., Zhang, P., Wang, B. G., & Xiao, Y. F. (2011b). Study on nondestructive measurement of firmness of Mopan persimmon using visible and near infrared diffuse reflection spectroscopy. Science and Technology of Food Industry, 7, 423–425,428.