Riboflavin synthase of Schizosaccharomyces pombe. Protein dynamics revealed by 19F NMR protein perturbation experiments
Tóm tắt
Riboflavin synthase catalyzes the transformation of 6,7-dimethyl-8-ribityllumazine into riboflavin in the last step of the riboflavin biosynthetic pathway. Gram-negative bacteria and certain yeasts are unable to incorporate riboflavin from the environment and are therefore absolutely dependent on endogenous synthesis of the vitamin. Riboflavin synthase is therefore a potential target for the development of antiinfective drugs. A cDNA sequence from Schizosaccharomyces pombe comprising a hypothetical open reading frame with similarity to riboflavin synthase of Escherichia coli was expressed in a recombinant E. coli strain. The recombinant protein is a homotrimer of 23 kDa subunits as shown by sedimentation equilibrium centrifugation. The protein sediments at an apparent velocity of 4.1 S at 20°C. The amino acid sequence is characterized by internal sequence similarity indicating two similar folding domains per subunit. The enzyme catalyzes the formation of riboflavin from 6,7-dimethyl-8-ribityllumazine at a rate of 158 nmol mg-1 min-1 with an apparent KM of 5.7 microM. 19F NMR protein perturbation experiments using fluorine-substituted intermediate analogs show multiple signals indicating that a given ligand can be bound in at least 4 different states. 19F NMR signals of enzyme-bound intermediate analogs were assigned to ligands bound by the N-terminal respectively C-terminal folding domain on basis of NMR studies with mutant proteins. Riboflavin synthase of Schizosaccharomyces pombe is a trimer of identical 23-kDa subunits. The primary structure is characterized by considerable similarity of the C-terminal and N-terminal parts. Riboflavin synthase catalyzes a mechanistically complex dismutation of 6,7-dimethyl-8-ribityllumazine affording riboflavin and 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione. The 19F NMR data suggest large scale dynamic mobility in the trimeric protein which may play an important role in the reaction mechanism.
Tài liệu tham khảo
Bandrin SV, Beburov MI, Rabinovich PM, Stepanov A: Riboflavin auxotrophs of Escherichia coli. Genetika. 1979, 15: 2063-2065.
Wang A: Isolation of vitamin B2 auxotrophs and preliminary genetic mapping in Salmonella typhimurium. Yi Chuan Xue Bao. 1992, 19: 362-368.
Oltmanns O, Lingens F: Isolation of riboflavin-deficient mutants of Saccharomyces cerevisiae. Z Naturforsch. 1967, B22: 751-754.
Logvinenko EM, Shavlovskii GM, Koltun LV: Preparation and properties of riboflavin-dependent mutants of Pichia guilliermondii Wickerham yeasts. Mikrobiologiia. 1972, 41: 1103-1104.
Plaut GWE: Studies on the nature of the enzymic conversion of 6,7-dimethyl-8-ribityllumazine to riboflavin. J Biol Chem. 1963, 238: 2225-
Harvey RA, Plaut GWE: Riboflavin synthase from yeast: Properties of complexes of the enzyme with lumazine derivatives and riboflavin. J Biol Chem. 1966, 241: 2120-2136.
Plaut GWE., Beach RL, Aogaichi T: Studies on the mechanism of elimination of protons from the methyl groups of 6,7-dimethyl-6-ribityllumazine by riboflavin synthetase. Biochemistry. 1970, 9: 771-785.
Beach RL, Plaut GWE: Stereospecificity of the enzymic synthesis of the o-xylene ring of riboflavin. J Am Chem Soc. 1970, 92: 2913-2916.
Paterson T, Wood HC: Deuterium exchange of C-methyl protons in 6,7-dimethyl-8-D-ribityllumazine, and studies of the mechanism of riboflavin biosynthesis. J Chem Soc Chem Commun. 1969, 290-291.
Sedlmaier H, Müller F, Keller PJ, Bacher A: Enzymatic synthesis of riboflavin and FMN specifically labeled with 13C in the xylene ring. Z Naturforsch. 1987, 42c: 425-429.
Illarionov B, Eisenreich W, Bacher A: A pentacyclic reaction intermediate of riboflavin synthase. Proc Natl Acad Sci USA. 2001, 98: 7224-7229. 10.1073/pnas.131610698.
Bacher A, Baur R, Eggers K, Harders H, Otto MK, Schnepple H: Riboflavin synthases of Bacillus subtilis. Purification and properties. J Biol Chem. 1980, 255: 632-637.
Eberhardt S, Richter G, Gimbel W, Werner T, Bacher A: Cloning, sequencing, mapping and hyperexpression of the ribC gene coding for riboflavin synthase of Escherichia coli. Eur J Biochem. 1996, 242: 712-719.
Schott K, Kellermann J, Lottspeich F, Bacher A: Riboflavin synthases of Bacillus subtilis. Purification and amino acid sequence of the α subunit. J Biol Chem. 1990, 265: 4204-4209.
Liao DI, Wawrzak Z, Calabrese JC, Viitanen PV, Jordan DB: Crystal structure of riboflavin synthase. Structure. 2001, 9: 399-408. 10.1016/S0969-2126(01)00600-1.
Eberhardt S, Zingler N, Kemter K, Richter G, Cushman M, Bacher A: Domain structure of riboflavin synthase. Eur J Biochem. 2001, 268: 4315-4323. 10.1046/j.1432-1327.2001.02351.x.
Truffault V, Coles M, Diercks T, Abelmann K, Eberhardt S, Lüttgen H, Bacher A, Kessler H: The solution structure of the N-terminal domain of riboflavin synthase. J Mol Biol. 2001, 309: 949-960. 10.1006/jmbi.2001.4683.
Illarionov B, Kemter K, Eberhardt S, Richter G, Cushman M, Bacher A: Riboflavin synthase of Escherichia coli. Effect of single amino acid substitutions on reaction rate and ligand binding properties. J Biol Chem. 2001, 276: 11524-11530. 10.1074/jbc.M008931200.
Cushman M, Patrick DA, Bacher A, Scheuring J: Synthesis of epimeric 6,7-bis(trifluoromethyl)-8-ribityllumazine hydrates. Stereoselective interaction with the light riboflavin synthase of Bacillus subtilis. J Org Chem. 1991, 56: 4603-4608.
Cushman M, Patel HH, Scheuring J, Bacher A: F NMR Studies on the mechanism of riboflavin synthase. Synthesis of 6-(Trifluoromethyl)-7-oxo-8-(D-ribityl)lumazine and 6-(Trifluoromethyl)-7-methyl-8-(D-ribityl)lumazine. J Org Chem. 1992, 57: 5630-5643.
Gerhardt S, Schott A, Kairies N, Cushman M, Illarionov B, Eisenreich W, Bacher A, Huber R, Steinbacher S, Fischer M: Studies on the reaction mechanism of riboflavin synthase. X-ray crystal structure of a complex with 6-carboxyethyl-7-oxo-8-ribityllumazine. Structure (Camb). 2002, 10: 1371-1381. 10.1016/S0969-2126(02)00864-X.
Otto MK, Bacher A: Ligand-binding studies on light riboflavin synthase from Bacillus subtilis. Eur J Biochem. 1981, 115: 511-517.
Scheuring J, Fischer M, Cushman M, Lee J, Bacher A, Oschkinat H: NMR analysis of site-specific binding in oligomeric proteins. Dynamic studies on the interaction of riboflavin synthase with trifluoromethyl-substituted intermediates. Biochemistry. 1996, 35: 9637-9646. 10.1021/bi9600916.
Scheuring J, Lee J, Cushman M, Oschkinat H, Bacher A: 19F NMR studies on lumazine protein from Photobacterium phosphoreum. In: Flavins and Flavoproteins . Edited by: Yagi K, Walter de Gruyter. 1994, 75-78.
Scheuring J, Lee J, Cushman M, Oschkinat H, Patel H, Patrick DA, Bacher A: Trifluoromethyllumazine derivatives as 19F NMR probes for lumazine protein. Biochemistry. 1994, 33: 7634-40.
Goetz JM, Poliks B, Studelska DR, Fischer M, Kugelbrey K, Bacher A, Cushman M, Schäfer J: Investigation of the binding of fluorolumazines to the 1-MDa capsid of lumazine synthase by 15N{19F} REDOR NMR. J Am Chem Soc. 1999, 121: 7500-7508. 10.1021/ja983792u.
Metha AK, Studelska DR, Fischer M, Giessauf A, Kemter K, Bacher A, Cushman M, Schaefer J: Investigation of the binding of epimer A of the covalent hydrate of 6,7-bis(trifluoromethyl)-8-D-ribityllumazine to a recombinant F22W Bacillus subtilis lumazine synthase mutant by 15N{19F}REDOR NMR. J Org Chem. 2002, 67: 2087-2092. 10.1021/jo010920f.
Gast R, Neering IR, Lee J: Separation of a blue fluorescence protein from bacterial luciferase. Biochem Biophys Res Commun. 1978, 80: 14-21.
O'Kane DJ, Lee J: Physical characterization of lumazine proteins from Photobacterium. Biochemistry. 1985, 24: 1484-1488.
Bacher A, Neuberger G, Volk R: Enzymatic synthesis of 6,7-dimethyl-8-ribityllumazine. In: Chemistry and Biology of Pteridines . Edited by: Cooper BA, Whitehead VM, Walter de Gruyter, Berlin. 1986, 227-230.
Wood HC, Wrigglesworth R, Yeowell DA, Gurney FW: Specific enzyme inhibitors in vitamin biosynthesis. II. Revised structures for some 8-substituted pyrido(2,3-d)-pyrimidines. J Chem Soc. 1974, 11: 1225-30.
Al-Hassan SS, Kuhol RJ, Livingstone DB, Suckling CJ, Wood HCS, Wrigglesworth R, Ferone R: Specific enzyme inhibitors in vitamin biosynthesis. Part 3. The synthesis and inhibitory properties of some substrate and transition state analogs of riboflavin synthase. J Chem Soc Perkin Trans I. 1980, 2645-2656.
Fischer M, Haase I, Feicht R, Richter G, Gerhardt S, Changeux JP, Huber R, Bacher A: Biosynthesis of Riboflavin. 6,7-Dimethyl-8-ribityllumazine synthase of Schizosaccharomyces pombe. Eur J Biochem. 2002, 269: 519-26. 10.1046/j.0014-2956.2001.02674.x.
Bullock WO, Fernandez JM, Short JM: XL1-blue: a high efficiency plasmid transforming recA Escherichia coli strain with β-galactosidase selection. BioTechniques. 1987, 5: 376-379.
Sanger F, Niklen S, Coulson AR: DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA. 1977, 74: 5463-5467.
Stüber D, Matile H, Garotta G: System for high-level production in Escherichia coli and rapid purification of recombinant proteins: application to epitop mapping, preparation of antibodies, and structure-function analysis. In: Immunological Methods . Edited by: Lefkovits I, Pernis P. 1990, IV: 121-152.
Illarionov B, Illarionova V, Lee J, van Dongen W, Vervoort J: Expression and properties of the recombinant lumazine (riboflavin) protein from Photobacterium leiognathi. Biochem Biophys Acta. 1994, 1201: 251-258. 10.1016/0304-4165(94)90048-5.
Read SM, Northcote DH: Minimization of variation in the response to different proteins of the Coomassie blue G dye-binding assay for protein. Anal Biochem. 1981, 116: 53-64.
Läemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970, 227: 680-685.
Plaut GWE, Harvey RA: The enzymic synthesis of riboflavin. In: Methods Enzymol. 1971, 18B: 515-538.
Laue TM, Shah BD, Ridgeway TM, Pelletier SL: In: Analytical ultracentrifugation in biochemistry and polymer science. Edited by: Harding SE, Rowe AJ, Horton JC. 1992, Royal Society of Chemistry, Cambridge, 90-125.
Mann M, Wilm M: electrospray mass spectrometry for protein characterization. Trends Biochem Sci. 1995, 20: 219-224. 10.1016/S0968-0004(00)89019-2.
Zamenhof PJ, Villarejo M: Construction and properties of Escherichia coli strains exhibiting α-complementation of β-galactosidase fragments in vivo. J Bacteriol. 1972, 110: 171-178.
Studier FW: Use of bacteriophage T7 lysozyme to improve an inducible T7 expression system. J Mol Biol. 1991, 219: 37-44.
Tabor S: Expression using the T7 RNA polymerase/promoter system. In: Current Protocols of Molecular Biology. 1990, Green Publishing and Wiley Interscience, NY, 1621-