Kiểm soát sự suy giảm của rhodopsin được kích hoạt bằng quang học và sự thích ứng trong bóng tối của tế bào que chuột bằng kinase rhodopsin và kết dính arrestin
Tóm tắt
Từ khóa
#photoactivation #Meta II #Meta III #rhodopsin #Grk1 #Arr1 #dark adaptation #mouse rodsTài liệu tham khảo
Adler, 2014, Mitochondria contribute to NADPH generation in mouse rod photoreceptors, J. Biol. Chem., 289, 1519, 10.1074/jbc.M113.511295
Ala-Laurila, 2006, Visual cycle: Dependence of retinol production and removal on photoproduct decay and cell morphology, J. Gen. Physiol., 128, 153, 10.1085/jgp.200609557
Arnis, 1995, Photoregeneration of bovine rhodopsin from its signaling state, Biochemistry., 34, 9333, 10.1021/bi00029a008
Bartl, 2001, Signaling states of rhodopsin: Absorption of light in active metarhodopsin II generates an all-trans-retinal bound inactive state, J. Biol. Chem., 276, 30161, 10.1074/jbc.M101506200
Blakeley, 2011, Rod outer segment retinol formation is independent of Abca4, arrestin, rhodopsin kinase, and rhodopsin palmitylation, Invest. Ophthalmol. Vis. Sci., 52, 3483, 10.1167/iovs.10-6694
Burns, 2006, Deactivation of phosphorylated and nonphosphorylated rhodopsin by arrestin splice variants, J. Neurosci., 26, 1036, 10.1523/JNEUROSCI.3301-05.2006
Chatterjee, 2015, Influence of arrestin on the photodecay of bovine rhodopsin, Angew. Chem. Int. Ed. Engl., 54, 13555, 10.1002/anie.201505798
Chen, 1999, Abnormal photoresponses and light-induced apoptosis in rods lacking rhodopsin kinase, Proc. Natl. Acad. Sci. USA., 96, 3718, 10.1073/pnas.96.7.3718
Doan, 2009, Arrestin competition influences the kinetics and variability of the single-photon responses of mammalian rod photoreceptors, J. Neurosci., 29, 11867, 10.1523/JNEUROSCI.0819-09.2009
Frederiksen, 2012, Low aqueous solubility of 11-cis-retinal limits the rate of pigment formation and dark adaptation in salamander rods, J. Gen. Physiol., 139, 493, 10.1085/jgp.201110685
Gurevich, 1992, Cell-free expression of visual arrestin. Truncation mutagenesis identifies multiple domains involved in rhodopsin interaction, J. Biol. Chem., 267, 21919, 10.1016/S0021-9258(19)36700-6
Heck, 2003, Signaling states of rhodopsin. Formation of the storage form, metarhodopsin III, from active metarhodopsin II, J. Biol. Chem., 278, 3162, 10.1074/jbc.M209675200
Hofmann, 1992, The role of arrestin and retinoids in the regeneration pathway of rhodopsin, J. Biol. Chem., 267, 15701, 10.1016/S0021-9258(19)49592-6
Imai, 2007, Molecular properties of rhodopsin and rod function, J. Biol. Chem., 282, 6677, 10.1074/jbc.M610086200
Kessler, 2014, Rhodopsin in the rod surface membrane regenerates more rapidly than bulk rhodopsin in the disc membranes in vivo, J. Physiol., 592, 2785, 10.1113/jphysiol.2014.272518
Kibelbek, 1991, Functional equivalence of metarhodopsin II and the Gt-activating form of photolyzed bovine rhodopsin, Biochemistry., 30, 6761, 10.1021/bi00241a019
Kolesnikov, 2003, The identity of metarhodopsin III, Vis. Neurosci., 20, 249, 10.1017/S0952523803203047
Kolesnikov, 2006, Recombination reaction of rhodopsin in situ studied by photoconversion of “indicator yellow.”, Vision Res., 46, 1665, 10.1016/j.visres.2005.07.032
Kolesnikov, 2007, Visual cycle and its metabolic support in gecko photoreceptors, Vision Res., 47, 363, 10.1016/j.visres.2006.08.024
Kolesnikov, 2011, Photoreactions of metarhodopsin II, Sensory Systems (Russian)., 25, 55
Kolesnikov, 2011, The mammalian cone visual cycle promotes rapid M/L-cone pigment regeneration independently of the interphotoreceptor retinoid-binding protein, J. Neurosci., 31, 7900, 10.1523/JNEUROSCI.0438-11.2011
Krupnick, 1997, Mechanism of quenching of phototransduction. Binding competition between arrestin and transducin for phosphorhodopsin, J. Biol. Chem., 272, 18125, 10.1074/jbc.272.29.18125
Lamb, 2004, Dark adaptation and the retinoid cycle of vision, Prog. Retin. Eye Res., 23, 307, 10.1016/j.preteyeres.2004.03.001
Lamb, 2015, The kinetics of regeneration of rhodopsin under enzyme-limited availability of 11-cis retinoid, Vision Res., 110, 23, 10.1016/j.visres.2015.02.014
Leibrock, 1997, Effect of hydroxylamine on photon-like events during dark adaptation in toad rod photoreceptors, J. Physiol., 501, 97, 10.1111/j.1469-7793.1997.00097.x
Maeda, 2005, Role of photoreceptor-specific retinol dehydrogenase in the retinoid cycle in vivo, J. Biol. Chem., 280, 18822, 10.1074/jbc.M501757200
Makino, 2003, Piecing together the timetable for visual transduction with transgenic animals, Curr. Opin. Neurobiol., 13, 404, 10.1016/S0959-4388(03)00091-6
Mendez, 2000, Rapid and reproducible deactivation of rhodopsin requires multiple phosphorylation sites, Neuron., 28, 153, 10.1016/S0896-6273(00)00093-3
Nymark, 2012, Bleaching of mouse rods: Microspectrophotometry and suction-electrode recording, J. Physiol., 590, 2353, 10.1113/jphysiol.2012.228627
Palczewski, 1999, Kinetics of visual pigment regeneration in excised mouse eyes and in mice with a targeted disruption of the gene encoding interphotoreceptor retinoid-binding protein or arrestin, Biochemistry., 38, 12012, 10.1021/bi990504d
Reuter, 2011, Fifty years of dark adaptation 1961-2011, Vision Res., 51, 2243, 10.1016/j.visres.2011.08.021
Ritter, 2004, Transition of rhodopsin into the active metarhodopsin II state opens a new light-induced pathway linked to Schiff base isomerization, J. Biol. Chem., 279, 48102, 10.1074/jbc.M406857200
Saari, 2012, Vitamin A metabolism in rod and cone visual cycles, Annu. Rev. Nutr., 32, 125, 10.1146/annurev-nutr-071811-150748
Saari, 1998, Reduction of all-trans-retinal limits regeneration of visual pigment in mice, Vision Res., 38, 1325, 10.1016/S0042-6989(97)00198-3
Sommer, 2006, Arrestin can act as a regulator of rhodopsin photochemistry, Vision Res., 46, 4532, 10.1016/j.visres.2006.08.031
Sommer, 2005, Dynamics of arrestin-rhodopsin interactions: Arrestin and retinal release are directly linked events, J. Biol. Chem., 280, 6861, 10.1074/jbc.M411341200
Song, 2009, Enhanced arrestin facilitates recovery and protects rods lacking rhodopsin phosphorylation, Curr. Biol., 19, 700, 10.1016/j.cub.2009.02.065
Song, 2011, Arrestin-1 expression level in rods: Balancing functional performance and photoreceptor health, Neuroscience., 174, 37, 10.1016/j.neuroscience.2010.11.009
Strissel, 2006, Arrestin translocation is induced at a critical threshold of visual signaling and is superstoichiometric to bleached rhodopsin, J. Neurosci., 26, 1146, 10.1523/JNEUROSCI.4289-05.2006
Tomizuka, 2015, Phosphorylation-independent suppression of light-activated visual pigment by arrestin in carp rods and cones, J. Biol. Chem., 290, 9399, 10.1074/jbc.M114.634543
Wald, 1955, Hindered cis isomers of vitamin A and retinene: The structure of the neo-B isomer, Proc. Natl. Acad. Sci. USA., 41, 438, 10.1073/pnas.41.7.438
Wang, 2014, Chromophore supply rate-limits mammalian photoreceptor dark adaptation, J. Neurosci., 34, 11212, 10.1523/JNEUROSCI.1245-14.2014
Wilden, 1982, Light-dependent phosphorylation of rhodopsin: number of phosphorylation sites, Biochemistry., 21, 3014, 10.1021/bi00541a032
Wilden, 1986, Phosphodiesterase activation by photoexcited rhodopsin is quenched when rhodopsin is phosphorylated and binds the intrinsic 48-kDa protein of rod outer segments, Proc. Natl. Acad. Sci. USA., 83, 1174, 10.1073/pnas.83.5.1174
Xu, 1997, Prolonged photoresponses in transgenic mouse rods lacking arrestin, Nature., 389, 505, 10.1038/39068
Xue, 2015, Circadian and light-driven regulation of rod dark adaptation, Sci. Rep., 5, 17616, 10.1038/srep17616