Rheology of nanofibrillated cellulose/acrylate systems for coating applications

Springer Science and Business Media LLC - Tập 21 - Trang 1313-1326 - 2014
Franziska Grüneberger1, Tina Künniger1, Tanja Zimmermann1, Martin Arnold1
1Applied Wood Materials, Swiss Federal Laboratories for Materials Science and Technology (Empa), Dübendorf, Switzerland

Tóm tắt

In this work, the suitability of nanofibrillated cellulose (NFC) as a novel component for wood coatings has been evaluated. NFC was prepared from two different wood pulps with a high pressure homogeniser and a grinder, depending on the initial fibre size of the two pulps. The fibrillation process was monitored using viscosity measurements and scanning electron microscopy. Viscosity measurements were found to be a suitable, reliable and especially fast and easy method for process monitoring, optimization and quality assessment of the NFC fibrillation process. NFC was mixed with four different waterborne acrylic polymer emulsions and analysed regarding its rheological behaviour. The viscosity of the acrylate–NFC suspensions was dominated by the NFC, whereas the polymer type was of minor importance at the tested concentrations. The viscosity increased exponentially after NFC addition and consequently the viscosity of such suspensions would be precisely adjustable in the considered shear range. During accelerated storage at elevated temperatures, the general flow behaviour did not change; only a slight viscosity increase was observed. The study shows that rheology is an important issue that has to be taken into account when applying NFC as additive in water based coating systems and that NFC is suitable as component for coating applications.

Tài liệu tham khảo

Ahola S, Salmi J, Johansson LS, Laine J, Österberg M (2008) Model films from native cellulose nanofibrils. Preparation, swelling, and surface interactions. Biomacromolecules 9(4):1273–1282. doi:10.1021/bm701317k

Aulin C, Ström G (2013) Multilayered alkyd resin/nanocellulose coatings for use in renewable packaging solutions with a high level of moisture resistance. Ind Eng Chem Res 52(7):2582–2589. doi:10.1021/ie301785a

Aulin C, Ahola S, Josefsson P, Nishino T, Hirose Y, Österberg M, Wågberg L (2009) Nanoscale cellulose films with different crystallinities and mesostructures—their surface properties and interaction with water. Langmuir 25(13):7675–7685. doi:10.1021/la900323n

Björkman U (2006) The metarheology of crowded fibre suspensions. Ann Trans Nord Rheol Soc 14:69–78

Boluk Y, Zhao L, Incani V (2012) Dispersions of nanocrystalline cellulose in aqueous polymer solutions: structure formation of colloidal rods. Langmuir 28(14):6114–6123. doi:10.1021/la2035449

Bousfield DW, Richmond F, Bilodeau M (2013) The properties of paper coating layers that contain cellulose nanofibrils. In: TAPPI international conference on nanotechnology for renewable materials, Stockholm, Sweden

Bulian F, Graystone JA (2009) Properties of wood coatings—testing and characterisation. In: Bulian F, Graystone JA (eds) Wood coatings. Elsevier, Amsterdam, pp 155–194. doi:10.1016/B978-0-444-52840-7.00006-0

Eyholzer C, Borges de Couraça A, Duc F, Bourban PE, Tingaut P, Zimmermann T, Månson JAE, Oksman K (2011) Biocomposite hydrogels with carboxymethylated, nanofibrillated cellulose powder for replacement of the nucleus pulposus. Biomacromolecules 12(5):1419–1427. doi:10.1021/bm101131b

Favier V, Canova GR, Cavaille JY, Chanzy H, Dufresne A, Gauthier C (1995) Nanocomposite materials from latex and cellulose whiskers. Poly Adv Technol 6(5):351–355. doi:10.1002/pat.1995.220060514

Gruber E, Gruber R (1981) Viskosimetrische Bestimmung des Polymerisationsgrades von Cellulose. Das Papier 35(4):133–141

Helbert W, Cavaille JY, Dufresne A (1996) Thermoplastic nanocomposites filled with wheat straw cellulose whiskers 1. Processing and mechanical behavior. Polym Compos 17(4):604–611. doi:10.1002/pc.10650

Ho T, Ko Y, Zimmermann T, Geiger T, Caseri W (2012) Processing and characterization of nanofibrillated cellulose/layered silicate systems. J Mater Sci 47:4370–4382. doi:10.1007/s10853-012-6291-8

Iotti M, Gregersen Ø, Moe S, Lenes M (2011) Rheological studies of microfibrillar cellulose water dispersions. J Polym Environ 19(1):137–145. doi:10.1007/s10924-010-0248-2

Iwamoto S, Nakagaito AN, Yano H (2007) Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl Phys A Mater 89(2):461–466. doi:10.1007/s00339-007-4175-6

Jämsä S, Kataja K, Takala S, Putkisto K, Vastamäki P, Dyhr H (2010) Method for manufacturing paint or varnish. WO2011124759 A1

Karppinen A, Saarinen T, Salmela J, Laukkanen A, Nuopponen M, Seppälä J (2012) Flocculation of microfibrillated cellulose in shear flow. Cellulose 19(6):1807–1819. doi:10.1007/s10570-012-9766-5

Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Edit 50(24):5438–5466. doi:10.1002/anie.201001273

Koleske JV (ed) (2012) Paint and coating testing manual. 15th edn. ASTM International. doi:10.1520/MNL17-2ND-EB

Landry V, Blanchet P (2009) Coatings containing nanocrystalline cellulose, processes for preparation and use thereof. WO2011075837 A1

Lowys MP, Desbrières J, Rinaudo M (2001) Rheological characterization of cellulosic microfibril suspensions. Role of polymeric additives. Food Hydrocolloid 15(1):25–32. doi:10.1016/s0268-005x(00)00046-1

Mezger TG (2011) The rheology handbook. European Coatings Tech Files, 3rd edn. Vincentz Network, Hanover

Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8(6):1934–1941. doi:10.1021/bm061215p

Philipp C (2010) The future of wood coatings. Eur Coat J 1:18–27

Ruiz MM, Cavaillé JY, Dufresne A, Graillat C, Gérard J-F (2001) New waterborne epoxy coatings based on cellulose nanofillers. Macromol Symp 169(1):211–222. doi:10.1002/1521-3900(200105)169:1<211:aid-masy211>3.0.co;2-h

Saarinen T, Haavisto S, Sorvari A, Salmela J, Seppälä J (2014) The effect of wall depletion on the rheology of microfibrillated cellulose water suspensions by optical coherence tomography. Cellulose. doi:10.1007/s10570-014-0187-5

Saito T, Nishiyama Y, Putaux J-L, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7(6):1687–1691. doi:10.1021/bm060154s

Spinu M, Santos N, Le Moigne N, Navard P (2011) How does the never-dried state influence the swelling and dissolution of cellulose fibres in aqueous solvent? Cellulose 18(2):247–256. doi:10.1007/s10570-010-9485-8

Tingaut P, Zimmermann T, Lopez-Suevos F (2010) Synthesis and characterization of bionanocomposites with tunable properties from poly(lactic acid) and acetylated microfibrillated cellulose. Biomacromolecules 11(2):454–464. doi:10.1021/Bm901186u

Wicks ZW, Jones FN, Pappas SP, Wicks DA (2006) Organic coatings. Wiley, Hoboken. doi:10.1002/9780470079072.ch5

Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mat 17(2):153–155. doi:10.1002/adma.200400597

Zimmermann T, Pöhler E, Geiger T (2004) Cellulose fibrils for polymer reinforcement. Adv Eng Mater 6(9):754–761. doi:10.1002/adem.200400097