Revival time and Aharonov–Bohm-type effect for a point charge in a uniform magnetic field under the spiral dislocation topology effects
Tóm tắt
We discuss the influence of the spiral dislocation topology on the revival time associated with the interaction of point charge with a uniform magnetic field. We begin by discussing how the spiral dislocation topology can induce a cut-off point, and thus, we analyze the influence of this cut-off point on the interaction of point charge with a uniform magnetic field. We show that the Landau levels are no longer achieved. In search of bound states, we show a particular case where a discrete spectrum of energy can be obtained and an Aharonov–Bohm-type effect exists. Further, we show that the only non-null revival time is related to the radial quantum number.
Tài liệu tham khảo
Landau, L.D., Lifshitz, E.M.: Quantum Mechanics, The Nonrelativistic Theory, 3rd edn. Pergamon, Oxford (1977)
Prange, R.E., Girvin, S.M.: The Quantum Hall Effect. Springer, New York (1990)
Edery, A., Audin, Y.: New degeneracies and modification of Landau levels in the presence of a parallel linear electric field. J. Phys. Commun. 3, 025013 (2019)
Furtado, C., et al.: Landau levels in the presence of disclinations. Phys. Lett. A 195, 90 (1994)
Furtado, C., Moraes, F.: Landau levels in the presence of a screw dislocation. Europhys. Lett. 45, 279 (1999)
da Silva, W.C.F., Bakke, K.: Non-relativistic effects on the interaction of a point charge with a uniform magnetic field in the distortion of a vertical line into a vertical spiral spacetime. Class. Quant. Grav. 36, 235002 (2019)
de Marques, G.A., et al.: Landau levels in the presence of topological defects. J. Phys. A Math. Gen. 34, 5945 (2001)
Maia, A.V.D.M., Bakke, K.: On an electron in an elastic medium with a spiral dislocation. Int. J. Mod. Phys. A 34, 1950153 (2019)
Maia, A.V.D.M., Bakke, K.: Effects of rotation on the Landau levels in an elastic medium with a spiral dislocation. Ann. Phys. (NY) 419, 168229 (2020)
Muniz, C.R., Bezerra, V.B., Cunha, M.S.: Landau quantization in the spinning cosmic string spacetime. Ann. Phys. (NY) 350, 105 (2014)
Rabi, I.I.: Das freie Elektron im homogenen Magnetfeld nach der Diracschen Theorie. Z. Phys. 49, 507 (1928)
Berestetskii, V.B., Lifshitz, E.M., Pitaevskii, L.P.: Quantum Electrodynamics, 2nd edn. Pergamon, Oxford (1982)
Jackiw, R.: Fractional charge and zero modes for planar systems in a magnetic field. Phys. Rev. D 29, 2375 (1984)
Balatsky, A.V., Volovik, G.E., Konyshev, A.V.: On the chiral anomaly in superfluid 3He-A. Zh. Eksp. Teor. Fiz. 90, 2038 (1986)
Haldane, F.D.M.: Model for a quantum Hall effect without Landau levels: condensed-matter realization of the parity anomaly. Phys. Rev. Lett. 61, 2015 (1988)
Schakel, A.M.J.: Relativistic quantum Hall effect. Phys. Rev. D 43, 1428 (1991)
Medeiros, E.R.F., de Mello, E.R.B.: Relativistic quantum dynamics of a charged particle in cosmic string spacetime in the presence of magnetic field and scalar potential. Eur. Phys. J. C 72, 2051 (2012)
Cunha, M.S., Muniz, C.R., Christiansen, H.R., Bezerra, V.B.: Relativistic Landau levels in the rotating cosmic string spacetime. Eur. Phys. J. C 76, 512 (2016)
Vitória, R.L.L., Bakke, K.: Aharonov–Bohm effect for bound states in relativistic scalar particle systems in a spacetime with a spacelike dislocation. Int. J. Mod. Phys. D 27, 1850005 (2018)
Maia, A.V.D.M., Bakke, K.: Relativistic Landau quantization in the spiral dislocation spacetime. Commun. Theor. Phys. 73, 025103 (2021)
Furtado, C., Moraes, F., Bezerra, V.B.: Global effects due to cosmic defects in Kaluza–Klein theory. Phys. Rev. D 59, 107504 (1999)
Verçin, A.: Two anyons in a static, uniform magnetic field: exact solution. Phys. Lett. B 260, 120 (1991)
Hassanabadi, H., et al.: On the motion of a quantum particle in the spinning cosmic string space–time. Ann. Phys. (NY) 356, 346 (2015)
Eshghi, M., Mehraban, H.: Study of a 2D charged particle confined by a magnetic and AB flux fields under the radial scalar power potential. Eur. Phys. J. Plus 132, 121 (2017)
Leite, E.V.B., et al.: Effects of the Cornell-type potential on a position-dependent mass system in Kaluza–Klein theory. Adv. High Energy Phys. 2019, 6740360 (2019)
Aharonov, Y., Bohm, D.: Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485 (1959)
Peshkin, M., Tonomura, A.: The Aharonov–Bohm effect. In: Lecture Notes in Physics, vol. 340. Springer, Berlin (1989)
Robinett, R.W.: Quantum wave packet revivals. Phys. Rep. 392, 1 (2004)
Bluhm, R., et al.: Wave-packet revivals for quantum systems with nondegenerate energies. Phys. Lett. A 222, 220 (1996)
Bluhm, R., et al.: The evolution and revival structure of localized quantum wave packets. Am. J. Phys. 64, 944 (1996)
Robinett, R.W.: Visualizing the collapse and revival of wave packets in the infinite square well using expectation values. Am. J. Phys. 68, 410 (2000)
Bagarello, F., Hatano, N.: PT-symmetric graphene under a magnetic field. Proc. R. Soc. A 472, 20160365 (2016)
Lydzba, P., Jacak, J.: Topological origin and not purely antisymmetric wave functions of many-body states in the lowest Landau level. Proc. R. Soc. A 473, 20160758 (2017)
Dehghani, A., Mojaveri, B.: New physics in Landau levels. J. Phys. A Math. Theor. 46, 385303 (2013)
Basu, B., Dhar, S., Chatterjee, S.: On atomic analogue of Landau quantization. Phys. Lett. A 372, 4319 (2008)
Ribeiro, L.R., Furtado, C., Nascimento, J.R.: Landau levels analog to electric dipole. Phys. Lett. A 348, 135 (2006)
Netto, A.L.S., Furtado, C.: Elastic landau levels. J. Phys. Condens. Matter 20, 125209 (2008)
Filgueiras, C., Rojas, M., Aciole, G., Silva, E.O.: Landau quantization, Aharonov–Bohm effect and two-dimensional pseudoharmonic quantum dot around a screw dislocation. Phys. Lett. A 380, 3847 (2016)
Katanaev, M.O., Volovich, I.V.: Theory of defects in solids and three-dimensional gravity. Ann. Phys. (NY) 216, 1 (1992)
Valanis, K.C., Panoskaltsis, V.P.: Material metric, connectivity and dislocations in continua. Acta Mech. 175, 77 (2005). https://doi.org/10.1007/s00707-004-0196-9
Zare, S., et al.: Spin and pseudospin symmetries of a relativistic fermion in an elastic medium with spiral dislocations. Eur. Phys. J. Plus 135, 748 (2020)
Hassanabadi, S., et al.: Duffin-Kemmer-Petiau particles in the presence of the spiral dislocation. Int. J. Mod. Phys. A 36, 2150100 (2021)
Hassanabadi, H., et al.: Interaction of the magnetic quadrupole moment of a non-relativistic particle with an electric field in a rotating frame. Ann. Phys. (NY) 412, 168040 (2020)
Lütfüoglu, B.C., et al.: Interaction of the magnetic quadrupole moment of a non-relativistic particle with an electric field in the background of screw dislocations with a rotating frame. Phys. Scr. 96, 015005 (2021)
Chen, H., et al.: Quantum description of the moving magnetic quadrupole moment interacting with electric field configurations under the rotating background with the screw dislocation. Indian J. Phys. (2022). https://doi.org/10.1007/s12648-022-02328-w
Zare, S., et al.: Relativistic free fermions in an elastic medium with screw dislocations. Eur. Phys. J. Plus 135, 122 (2020)
Zare, S., et al.: Nonrelativistic particles in the presence of a Cariena–Perelomov–Raada–Santander oscillator and a disclination. Int. J. Mod. Phys. A 35, 2050071 (2020)
Zare, S., et al.: Duffin-Kemmer-Petiau oscillator in the presence of a cosmic screw dislocation. Int. J. Mod. Phys. A 35, 2050195 (2020)
de Montigny, M., et al.: Exact solutions of the generalized Klein–Gordon oscillator in a global monopole space–time. Eur. Phys. J. Plus 136, 788 (2021)
Zare, S., et al.: Influences of lorentz symmetry violation on charged dirac fermions in cosmic dislocation space-time. Gen. Relativ. Gravit. 54, 69 (2022)
Zare, S., et al.: Relativistic Landau quantization for a composite system in the spiral dislocation spacetime. Eur. Phys. J. Plus 137, 589 (2022)
Chen, H., et al.: The influence of Aharonov–Casher effect on the generalized Dirac oscillator in the cosmic string space-time. Int. J. Geom. Method. Mod. Phys. 19, 2250133 (2022)
Zare, S., et al.: On the interaction of a Cornell-type nonminimal coupling with the scalar field under the background of topological defects. Int. J. Mod. Phys. A 37, 2250033 (2022)
Furtado, C., et al.: Aharonov-Bohm effect in the presence of a density of defects. Phys. Lett. A 296, 171 (2002)
Bezerra, V.B.: Global effects due to a chiral cone. J. Math. Phys. 38, 2553 (1997)
Netto, A.L.S., Chesman, C., Furtado, C.: Influence of topology in a quantum ring. Phys. Lett. A 372, 3894 (2008)
Furtado, C., Bezerra, V.B., Moraes, F.: Quantum scattering by a magnetic flux screw dislocation. Phys. Lett. A 289, 160 (2001)
Falaye, B.J., et al.: Hydrogen atom in a quantum plasma environment under the influence of Aharonov–Bohm flux and electric and magnetic fields. Phys. Rev. E 93, 053201 (2016)
Jing, J., et al.: On the time-dependent Aharonov–Bohm effect. Phys. Lett. B 774, 87 (2017)
Jing, J., et al.: On the noncommutative Aharonov–Bohm effects. Phys. Lett. B 808, 135660 (2020)
Furtado, C., et al.: Aharonov–Bohm effect for bound states in Kaluza–Klein theory. Mod. Phys. Lett. A 15, 253 (2000)
de Marques, G.A., et al.: Quantum effects due to a magnetic flux associated to a topological defect. Int. J. Mod. Phys. A 20, 6051 (2005)
Camblong, H.E., et al.: Renormalization of the inverse square potential. Phys. Rev. Lett. 85, 1590 (2000)
Coon, S.A., Holstein, B.R.: Anomalies in quantum mechanics: the \(1/r^{2}\) potential. Am. J. Phys. 70, 513 (2002)
Essin, A.M., Griffths, D.J.: Quantum mechanics of the \(1/x^{2}\) potential. Am. J. Phys. 74, 109 (2006)
Gupta, K.S., Rajeev, S.G.: Renormalization in quantum mechanics. Phys. Rev. D 48, 5940 (1993)
Bakke, K., Furtado, C.: Aharonov–Casher effect in the presence of spin-dependent potential. Ann. Phys. (NY) 422, 168325 (2020)
Abramowitz, M., Stegum, I.A.: Handbook of Mathematical Functions. Dover Publications Inc., New York (1965)
Sinha, D., Berche, B.: Quantum oscillations and wave packet revival in conical graphene structure. Eur. Phys. J. B 89, 57 (2016)
García, T., et al.: Wavepacket revivals in monolayer and bilayer graphene rings. J. Phys. Condens. Matter 25, 235301 (2013)
Krueckl, V., Kramer, T.: Revivals of quantum wave packets in graphene. New J. Phys. 11, 093010 (2009)
Bluhm, R., Kostelecký, V.A.: Quantum defects and the long-term behavior of radial Rydberg wave packets. Phys. Rev. A 50, R4445 (1994)
Bluhm, R., Kostelecký, V.A.: Long-term evolution and revival structure of Rydberg wave packets for hydrogen and alkali-metal atoms. Phys. Rev. A 51, 4767 (1995)
Bluhm, R., Kostelecký, V.A.: Long-term evolution and revival structure of Rydberg wave packets. Phys. Lett. A 200, 308 (1995)
Schmidt, A.G.M., et al.: Quantum wave packet revival in two-dimensional circular quantum wells with position-dependent mass. Phys. Lett. A 372, 2774 (2008)
Styer, D.F.: Quantum revivals versus classical periodicity in the infinite square well. Am. J. Phys. 69, 56 (2001)
Robinett, R.W.: Wave packet revivals and quasirevivals in one-dimensional power law potentials. J. Math. Phys. 41, 1801 (2001)
Aronstein, D.L., Stroud, C.R., Jr.: Fractional wave-function revivals in the infinite square well. Phys. Rev. A 55, 4526 (1997)
Doncheskia, M.A., Robinett, R.W.: Wave packet revivals and the energy eigenvalue spectrum of the quantum pendulum. Ann. Phys. (NY) 308, 578 (2003)
Shu, C.-C., et al.: Orientational quantum revivals induced by a single-cycle terahertz pulse. Phys. Rev. A 102, 063124 (2020)
Krizanac, M., et al.: Quantum revivals and magnetization tunneling in effective spin systems. New J. Phys. 18, 033029 (2016)
Lando, G.M., et al.: Quantum revival patterns from classical phase-space trajectories. Phys. Rev. A 99, 042125 (2019)
Maia, A.V.D.M., Bakke, K.: On the interaction of an electron with a nonuniform electric field under the influence of a cut-off point induced by the spiral dislocation topology. Phys. B 623, 413337 (2021)
Maia, A.V.D.M., Bakke, K.: Topological effects of a spiral dislocation on quantum revivals. Universe 8, 168 (2022)
da Silva, W.C.F., Bakke, K.: On the effects of rotation and spiral dislocation topology on the persistent currents and quantum revivals in a cylindrical wire. Eur. Phys. J. Plus 136, 920 (2021)
Doncheski, M.A., et al.: Wave packet construction in two-dimensional quantum billiards: blueprints for the square, equilateral triangle, and circular cases. Am. J. Phys. 71, 541 (2003)
Bluhm, R., et al.: Revival structure of Stark wave packets. Phys. Rev. A 55, 819 (1997)
Robinett, R.W., Heppelmann, S.: Quantum wave-packet revivals in circular billiards. Phys. Rev. A 65, 062103 (2002)
Ribeiro, L.R., Passos, E., Furtado, C.: An analogy of the quantum hall conductivity in a Lorentz-symmetry violation setup. J. Phys. G Nucl. Part. Phys. 39, 105004 (2012)
Ahmedov, B.J., Ermamatov, M.J.: Electrical conductivity in general relativity. Found. Phys. Lett. 15, 3015 (2002)
Fischer, U.R., Schopohl, N.: Hall state quantization in a rotating frame. Europhys. Lett. 54, 502 (2001)
Chowdhury, D., Basu, B.: Effect of a cosmic string on spin dynamics. Phys. Rev. D 90, 125014 (2014)
Poux, A., Araújo, L.R.S., Filgueiras, C., Moraes, F.: Landau levels, self-adjoint extensions and Hall conductivity on a cone. Eur. Phys. J. Plus 129, 100 (2014)
Zhang, Y., Tan, Y.-W., Storner, H.L., Kim, P.: Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201 (2005)
Jiang, Z., Zhang, Y., Tan, Y.-W., Storner, H.L., Kim, P.: Quantum Hall effect in graphene. Solid State Commun. 143, 14 (2007)
Bueno, M.J., et al.: Quantum dot in a graphene layer with topological defects. Eur. Phys. J. Plus 129, 201 (2014)
Neto, J.A., et al.: Quantum ring in gapped graphene layer with wedge disclination in the presence of a uniform magnetic field. Eur. Phys. J. Plus 133, 185 (2018)
Neto, J.A., et al.: Two-dimensional quantum ring in a graphene layer in the presence of a Aharonov–Bohm flux. Ann. Phys. (NY) 373, 273 (2016)