Revisiting the charge compensation mechanisms in LiNi<sub>0.8</sub>Co<sub>0.2−y</sub>Al<sub>y</sub>O<sub>2</sub> systems

Materials Horizons - Tập 6 Số 10 - Trang 2112-2123
Zachary W. Lebens-Higgins1,2,3,4, Nicholas V. Faenza5,6,7,8,9, Maxwell D. Radin10,11,12, Hao Liu2,13,4, Shawn Sallis14,15,2,16, Jatinkumar Rana1,2,3,4, Julija Vinckevičiūtė10,11,12, Philip J. Reeves17,18,19, Mateusz Zuba15,2,16, Fadwa Badway5,6,7,8,9, Nathalie Pereira5,6,7,8,9, Karena W. Chapman20,21,22, Tien‐Lin Lee23,24,25,26, Tianpin Wu27,28,29,30, Clare P. Grey17,18,19, Brent C. Melot31,32,33, Anton Van der Ven10,11,12, Glenn G. Amatucci5,6,7,8,9, Wanli Yang14,34,35, Louis F. J. Piper1,3,16,4
1Applied Physics, and Astronomy
2Binghamton University
3Department of Physics, Applied Physics, and Astronomy, Binghamton University, New York 13902, USA
4New York 13902
5Department of Materials Science and Engineering
6Energy Storage Research Group, Department of Materials Science and Engineering, Rutgers University, North Brunswick, New Jersey 08902, USA
7New Jersey 08902
8North Brunswick
9Rutgers University
10Materials Department, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
11Santa Barbara
12University of California, Santa Barbara
13Department of Chemistry, Binghamton University, New York 13902, USA
14Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
15Binghamton
16Materials Science & Engineering, Binghamton University, Binghamton, New York 13902, USA
17Cambridge
18Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
19University of Cambridge
20Department of Chemistry, Stony Brook University, 100 Nicolls Rd, Stony Brook, NY, USA
21Stony Brook
22Stony Brook University
23Diamond House
24Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
25Didcot
26Harwell Science and Innovation Campus
27Advanced Photon Source
28Argonne
29Argonne National Laboratory
30X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
31Department of Chemistry, University of Southern California, Los Angeles, USA
32Los Angeles
33University of Southern California
34Berkeley
35Lawrence Berkeley National Laboratory

Tóm tắt

The emergence of oxidized oxygen RIXS features at high voltages for Ni-rich layered oxide cathodes.

Từ khóa


Tài liệu tham khảo

Xu, 2016, J. Mater. Chem. A, 5, 874, 10.1039/C6TA07991A

Radin, 2017, Adv. Energy Mater., 7, 1602888, 10.1002/aenm.201602888

Myung, 2017, ACS Energy Lett., 2, 196, 10.1021/acsenergylett.6b00594

Lin, 2014, Nat. Commun., 5, 3529, 10.1038/ncomms4529

Kondrakov, 2017, J. Phys. Chem. C, 121, 24381, 10.1021/acs.jpcc.7b06598

Liu, 2017, Nano Lett., 17, 3452, 10.1021/acs.nanolett.7b00379

Faenza, 2018, Chem. Mater., 30, 7545, 10.1021/acs.chemmater.8b02720

Sun, 2009, Nat. Mater., 8, 320, 10.1038/nmat2418

Scott, 2011, Nano Lett., 11, 414, 10.1021/nl1030198

Jung, 2014, Adv. Energy Mater., 4, 1300787, 10.1002/aenm.201300787

Lin, 2016, Nat. Energy, 1, 15004, 10.1038/nenergy.2015.4

Tarascon, 1999, J. Solid State Chem., 147, 410, 10.1006/jssc.1999.8465

Li, 2019, J. Am. Chem. Soc., 141, 5097, 10.1021/jacs.8b13798

Gauthier, 2015, J. Phys. Chem. Lett., 6, 4653, 10.1021/acs.jpclett.5b01727

Aydinol, 1997, Phys. Rev. B: Condens. Matter Mater. Phys., 56, 1354, 10.1103/PhysRevB.56.1354

Van der Ven, 1998, Phys. Rev. B: Condens. Matter Mater. Phys., 58, 2975, 10.1103/PhysRevB.58.2975

Goodenough, 2010, Chem. Mater., 22, 587, 10.1021/cm901452z

Yoon, 2002, J. Phys. Chem. B, 106, 2526, 10.1021/jp013735e

Chen, 2007, J. Power Sources, 174, 938, 10.1016/j.jpowsour.2007.06.083

Mizokawa, 2013, Phys. Rev. Lett., 111, 056404, 10.1103/PhysRevLett.111.056404

Klinser, 2016, Appl. Phys. Lett., 109, 213901, 10.1063/1.4968547

Seo, 2016, Nat. Chem., 8, 692, 10.1038/nchem.2524

Qiu, 2017, Chem. Mater., 29, 908, 10.1021/acs.chemmater.6b04815

Xie, 2017, Energy Environ. Sci., 10, 266, 10.1039/C6EE02328B

Li, 2017, Adv. Mater., 29, 1701054, 10.1002/adma.201701054

Assat, 2018, Nat. Energy, 3, 373, 10.1038/s41560-018-0097-0

Yoon, 2007, J. Power Sources, 174, 1015, 10.1016/j.jpowsour.2007.06.214

Yabuuchi, 2015, Proc. Natl. Acad. Sci. U. S. A., 112, 7650, 10.1073/pnas.1504901112

Luo, 2016, Nat. Chem., 8, 684, 10.1038/nchem.2471

Risthaus, 2018, J. Power Sources, 395, 16, 10.1016/j.jpowsour.2018.05.026

Yang, 2018, J. Power Sources, 389, 188, 10.1016/j.jpowsour.2018.04.018

Luo, 2016, J. Am. Chem. Soc., 138, 11211, 10.1021/jacs.6b05111

Gent, 2017, Nat. Commun., 8, 2091, 10.1038/s41467-017-02041-x

Xu, 2018, Nat. Commun., 9, 947, 10.1038/s41467-018-03403-9

Maitra, 2018, Nat. Chem., 10, 288, 10.1038/nchem.2923

House, 2018, Energy Environ. Sci., 11, 926, 10.1039/C7EE03195E

Dai, 2018, Joule, 3, 518, 10.1016/j.joule.2018.11.014

Okubo, 2017, ACS Appl. Mater. Interfaces, 9, 36463, 10.1021/acsami.7b09835

Zhuo, 2018, J. Phys. Chem. Lett., 9, 6378, 10.1021/acs.jpclett.8b02757

Liu, 2018, J. Mater. Chem. A, 6, 4189, 10.1039/C7TA10829J

Hwang, 2014, Chem. Mater., 26, 1084, 10.1021/cm403332s

Grenier, 2017, Chem. Mater., 29, 7345, 10.1021/acs.chemmater.7b02236

Lebens-Higgins, 2018, Chem. Mater., 30, 958, 10.1021/acs.chemmater.7b04782

Chen, 2004, J. Power Sources, 128, 278, 10.1016/j.jpowsour.2003.10.009

Kim, 2015, Chem. Mater., 27, 2546, 10.1021/acs.chemmater.5b00283

Liu, 2017, J. Electrochem. Soc., 164, A1802, 10.1149/2.0271709jes

Stokes, 2006, J. Appl. Crystallogr., 39, 607, 10.1107/S0021889806014075

Ravel, 2005, J. Synchrotron Radiat., 12, 537, 10.1107/S0909049505012719

Ankudinov, 1998, Phys. Rev. B: Condens. Matter Mater. Phys., 58, 7565, 10.1103/PhysRevB.58.7565

Akimoto, 1998, J. Solid State Chem., 141, 298, 10.1006/jssc.1998.7966

Rana, 2016, J. Electrochem. Soc., 163, A811, 10.1149/2.0211606jes

S. Calvin , Relationship Between Electron Delocalization and Asymmetry of the Pair Distribution Function as Determined by X-ray Absorption Spectroscopy , The City University of New York , 2001

Qiao, 2017, Rev. Sci. Instrum., 88, 033106, 10.1063/1.4977592

Kresse, 1993, Phys. Rev. B: Condens. Matter Mater. Phys., 47, 558, 10.1103/PhysRevB.47.558

Kresse, 1994, Phys. Rev. B: Condens. Matter Mater. Phys., 49, 14251, 10.1103/PhysRevB.49.14251

Kresse, 1996, Comput. Mater. Sci., 6, 15, 10.1016/0927-0256(96)00008-0

Kresse, 1996, Phys. Rev. B: Condens. Matter Mater. Phys., 54, 11169, 10.1103/PhysRevB.54.11169

Blöchl, 1994, Phys. Rev. B: Condens. Matter Mater. Phys., 50, 17953, 10.1103/PhysRevB.50.17953

Perdew, 1997, Phys. Rev. Lett., 78, 1396, 10.1103/PhysRevLett.78.1396

Dudarev, 1998, Phys. Rev. B: Condens. Matter Mater. Phys., 57, 1505, 10.1103/PhysRevB.57.1505

Rana, 2014, J. Power Sources, 255, 439, 10.1016/j.jpowsour.2014.01.037

Ates, 2015, RSC Adv., 5, 27375, 10.1039/C4RA17235C

Trease, 2016, Chem. Mater., 28, 8170, 10.1021/acs.chemmater.6b02797

Balasubramanian, 2000, J. Electrochem. Soc., 147, 2903, 10.1149/1.1393624

Carlier, 2001, J. Mater. Chem., 11, 594, 10.1039/b006179o

Makimura, 2016, J. Electrochem. Soc., 163, A1450, 10.1149/2.1171607jes

Qiao, 2017, J. Power Sources, 360, 294, 10.1016/j.jpowsour.2017.06.009

Tokushima, 2009, Phys. Chem. Chem. Phys., 11, 1679, 10.1039/b818812b

Yoon, 2002, J. Phys. Chem. B, 106, 2526, 10.1021/jp013735e

Faenza, 2017, Langmuir, 33, 9333, 10.1021/acs.langmuir.7b00863

Ruther, 2014, J. Electrochem. Soc., 162, A98, 10.1149/2.0361501jes

Chen, 2016, Chem. Mater., 28, 6656, 10.1021/acs.chemmater.6b02870

Rong, 2017, Joule, 2, 125, 10.1016/j.joule.2017.10.008

Sathiya, 2013, Nat. Mater., 12, 827, 10.1038/nmat3699

Saubanère, 2016, Energy Environ. Sci., 9, 984, 10.1039/C5EE03048J

Assat, 2017, Chem. Mater., 29, 9714, 10.1021/acs.chemmater.7b03434

Yabuuchi, 2016, Nat. Commun., 7, 13814, 10.1038/ncomms13814

Foix, 2016, J. Phys. Chem. C, 120, 862, 10.1021/acs.jpcc.5b10475

Marusczyk, 2017, J. Mater. Chem. A, 15183, 10.1039/C7TA04164K

Choi, 2016, Nat. Rev. Mater., 1, 16013, 10.1038/natrevmats.2016.13