Review on Challenges and Recent Advances in the Electrochemical Performance of High Capacity Li‐ and Mn‐Rich Cathode Materials for Li‐Ion Batteries

Advanced Energy Materials - Tập 8 Số 8 - 2018
Prasant Kumar Nayak1,2, Evan M. Erickson1, Florian Schipper1, Tirupathi Rao Penki1, N. Munichandraiah3, Philipp Adelhelm2, Hadar Sclar1, Francis Amalraj1, Boris Markovsky1, Doron Aurbach1
1Department of Chemistry and Center for Nano-Technology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002 Israel
2Institute for Technical Chemistry and Environmental Chemistry, Center for Energy and Environmental Chemistry (CEEC Jena), Friedrich-Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany
3Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India

Tóm tắt

Abstract

Li and Mn‐rich layered oxides, xLi2MnO3·(1–x)LiMO2 (M=Ni, Mn, Co), are promising cathode materials for Li‐ion batteries because of their high specific capacity that can exceed 250 mA h g−1. However, these materials suffer from high 1st cycle irreversible capacity, gradual capacity fading, low rate capability, a substantial charge‐discharge voltage hysteresis, and a large average discharge voltage decay during cycling. The latter detrimental phenomenon is ascribed to irreversible structural transformations upon cycling of these cathodes related to potentials ≥4.5 V required for their charging. Transition metal inactivation along with impedance increase and partial layered‐to‐spinel transformation during cycling are possible reasons for the detrimental voltage fade. Doping of Li, Mn‐rich materials by Na, Mg, Al, Fe, Co, Ru, etc. is useful for stabilizing capacity and mitigating the discharge‐voltage decay of xLi2MnO3·(1–x)LiMO2 electrodes. Surface modifications by thin coatings of Al2O3, V2O5, AlF3, AlPO4, etc. or by gas treatment (for instance, by NH3) can also enhance voltage and capacity stability during cycling. This paper describes the recent literature results and ongoing efforts from our groups to improve the performance of Li, Mn‐rich materials. Focus is also on preparation of cobalt‐free cathodes, which are integrated layered‐spinel materials with high reversible capacity and stable performance.

Từ khóa


Tài liệu tham khảo

10.1021/cr020731c

10.1039/c1ee01598b

10.1021/jz400032v

10.1021/jz2001216

10.1016/0025-5408(80)90012-4

10.1149/1.2789404

10.1246/cl.2001.642

10.1149/1.3212850

10.1016/j.jpowsour.2008.09.090

10.1016/j.mattod.2014.10.040

10.1016/j.ssi.2008.01.048

10.1016/j.jelechem.2014.09.005

10.1021/am403684z

10.1016/j.jpowsour.2013.01.063

10.1021/acsenergylett.6b00150

10.1002/aenm.201300787

10.1021/acsami.5b09641

10.1006/jssc.1993.1182

10.1016/S0378-7753(99)00066-X

10.1149/1.3110803

10.1016/j.electacta.2013.03.029

10.1007/s10008-013-2221-1

10.1002/aenm.201300998

10.1149/1.1407994

10.1021/acs.accounts.5b00277

10.1149/2.0071514jes

10.1039/C5EE03573B

10.1039/C4RA12454E

10.1021/am504701s

10.1016/j.electacta.2010.12.049

10.1039/C5NJ02423D

10.1039/C4TA06552B

10.1039/b417616m

10.1039/c2cp40745k

10.1063/1.2931002

10.1149/1.2968956

10.1021/cm200250a

10.1002/adma.200904247

10.1021/cm301140g

10.1002/aenm.201300950

10.1002/anie.201301236

10.1021/ja410137s

10.1021/cm030194s

10.1021/jp301879x

10.1021/cm200831c

10.1016/j.jpowsour.2007.11.077

10.1149/2.1221607jes

10.1038/ncomms9711

10.1021/acs.chemmater.6b04815

10.1038/nmat4864

10.1039/C5EE03048J

10.1039/C6TA00174B

10.1149/2.0531614jes

10.1021/jacs.5b01424

10.1021/acs.jpcc.5b10475

10.1038/nmat3699

10.1038/nmat4551

10.1038/nchem.2471

10.1126/science.aac8260

10.1149/2.0461701jes

10.1016/j.nanoen.2015.12.027

10.1038/nmat4479

10.1149/2.0101410jes

10.1149/2.1001702jes

10.1021/cm504583y

10.1002/celc.201500339

10.1021/ja062027

10.1002/aenm.201501010

10.1149/1.2180528

10.1016/j.elecom.2008.10.036

10.1039/b823506f

10.1016/j.electacta.2012.05.142

10.1016/j.jpowsour.2009.02.005

10.1149/1.3515900

10.1016/j.jpowsour.2011.07.054

10.1021/am504412n

10.1039/C4RA10097B

10.1039/c2jm33484d

10.1039/c3ta12296d

10.1039/C5RA03445K

10.1021/nn305065u

10.1038/nmat4137

10.1021/jp0674367

10.1149/2.091311jes

10.1016/j.electacta.2012.10.111

10.1021/am508579r

10.1002/aenm.201500274

10.1038/ncomms13598

10.1149/2.040403jes

10.1016/j.electacta.2013.05.145

10.1149/2.044202jes

10.1149/2.0321503jes

10.1149/2.0461410jes

10.1149/2.070403jes

10.1021/acsami.6b07959

10.1002/aenm.201502398

10.1039/C6CP07383B

10.1016/j.ceramint.2015.08.104

10.1016/j.electacta.2014.06.155

10.1016/j.jpowsour.2015.02.085

10.1016/j.jpowsour.2015.06.059

10.1002/cssc.201500143

10.1016/j.elecom.2006.09.014

10.1149/1.3151963

10.1021/cm2034992

10.1039/C4CP04087B

10.1149/2.0681414jes

10.1039/C5RA03289J

10.1002/cssc.201600576

10.1016/0167-2738(94)90267-4

10.1038/ncomms12108

10.1039/c2jm30989k

10.1021/am5089764

10.1002/aenm.201700708

10.1039/C3TA12440A

10.1021/acsami.6b06733

10.1016/j.jpowsour.2016.03.107

10.1021/acsami.6b04849

10.1039/C6RA25275C

10.1021/jp501970j

10.1016/j.elecom.2012.08.016

10.1149/2.0251504jes

10.1016/j.jpowsour.2015.07.065

10.1016/j.elecom.2010.03.024

10.1039/C4RA04976D

10.1039/c3ta11580a

10.1039/C4TA01790K

10.1016/j.electacta.2014.06.055

10.1016/j.electacta.2012.06.118

10.1039/C4TA02947J

10.1002/aenm.201400062

10.1002/aenm.201401156

10.1039/C5TA06945A

10.1039/C5TA02233A

10.1149/1.1870755

10.1016/j.jallcom.2008.06.123

10.1016/j.mseb.2016.04.012