Review of control strategies for robotic movement training after neurologic injury

Laura Marchal-Crespo1, David J Reinkensmeyer1,2
1Department of Mechanical and Aerospace Engineering, University of California, Irvine, USA
2Department of Biomedical Engineering, University of California, Irvine, USA

Tóm tắt

There is increasing interest in using robotic devices to assist in movement training following neurologic injuries such as stroke and spinal cord injury. This paper reviews control strategies for robotic therapy devices. Several categories of strategies have been proposed, including, assistive, challenge-based, haptic simulation, and coaching. The greatest amount of work has been done on developing assistive strategies, and thus the majority of this review summarizes techniques for implementing assistive strategies, including impedance-, counterbalance-, and EMG- based controllers, as well as adaptive controllers that modify control parameters based on ongoing participant performance. Clinical evidence regarding the relative effectiveness of different types of robotic therapy controllers is limited, but there is initial evidence that some control strategies are more effective than others. It is also now apparent there may be mechanisms by which some robotic control approaches might actually decrease the recovery possible with comparable, non-robotic forms of training. In future research, there is a need for head-to-head comparison of control algorithms in randomized, controlled clinical trials, and for improved models of human motor recovery to provide a more rational framework for designing robotic therapy control strategies.

Tài liệu tham khảo

Reinkensmeyer DJ, Emken JL, Cramer SC: Robotics, motor learning, and neurologic recovery. Annual Review of Biomedical Engineering. 2004, 6: 497-525. Riener R, Nef T, Colombo G: Robot-aided neurorehabilitation of the upper extremities. Med Biol Eng Comput. 2005, 43 (1): 2-10. Matarić MJ, Eriksson J, Feil-Seifer DJ, Winstein CJ: Socially assistive robotics for post-stroke rehabilitation. J Neuroeng Rehabil. 2007, 4: 5- Kristy KA, Wu SJ, Erlandson RF, deBear P, Geer D, Dijkers M: A robotic arm "smart exercise system": a rehabilitation therapy modality. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 1989, 1504-1505. Lum PS, Uswatte G, Taub E, Hardin P, Mark VW: A telerehabilitation approach to delivery of constraint-induced movement therapy. J Rehabil Res Dev. 2006, 43 (3): 391-400. Emken JL, Benitez R, Reinkensmeyer DJ: Human-robot cooperative movement training: learning a novel sensory motor transformation during walking with robotic assistance-as-needed. J Neuroeng Rehabil. 2007, 4: 8- Aoyagi D, Ichinose WE, Harkema SJ, Reinkensmeyer DJ, Bobrow JE: A robot and control algorithm that can synchronously assist in naturalistic motion during body weight supported gait training following neurologic injury. IEEE Trans Neural Syst Rehabil Eng. 2007, 15 (3): 387-400. Veneman JF, Kruidhof R, Hekman EEG, Ekkelenkamp R, van Asseldonk EHF, Kooij van der H: Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2007, 15 (3): 379-386. Banala SK, Agrawal SK, Scholz JP: Active Leg Exoskeleton (ALEX) for gait rehabilitation of motor-impaired patients. IEEE 10th International Conference on Rehabilitation Robotics, ICORR 2007. 2007, 401-407. Riener R, Lunenburger L, Jezernik S, Anderschitz JM, Colombo G, Dietz V: Patient-cooperative strategies for robot-aided treadmill training: first experimental results. IEEE Trans Neural Syst Rehabil Eng. 2005, 13 (3): 380-394. Wheeler JW, Krebs HI, Hogan N: An ankle robot for a modular gait rehabilitation system. Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2004. 2004, 2: 1680-1684. Yano H, Kasai K, Saitou H, Iwata H: Development of a gait rehabilitation system using a locomotion interface. The Journal of Visualization and Computer Animation. 2003, 14 (5): 243-252. Sawicki GS, Domingo A, Ferris DP: The effects of powered ankle-foot orthoses on joint kinematics and muscle activation during walking in individuals with incomplete spinal cord injury. J Neuroeng Rehabil. 2006, 3: 3- Surdilovic D, Zhang J, Bernhardt R: STRING-MAN: Wire-robot technology for safe, flexible and human-friendly gait rehabilitation. IEEE 10th International Conference on Rehabilitation Robotics, ICORR 2007. 2007, 446-453. Schmidt H, Hesse S, Bernhardt R, Krüueger J: HapticWalker-a novel haptic foot device. ACM Transactions on Applied Perception (TAP). 2005, 2 (2): 166-180. Wolbrecht ET, Chan V, Reinkensmeyer D, Bobrow JE: Optimizing compliant, model-based robotic assistance to promote neurorehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2008, 16 (3): 286-297. Nef T, Mihelj M, Riener R: ARMin: a robot for patient-cooperative arm therapy. Medical and Biological Engineering and Computing. 2007, 45 (9): 887-900. Montagner A, Frisoli A, Borelli L, Procopio C, Bergamasco M, Carboncini MC, Rossi B: A pilot clinical study on robotic assisted rehabilitation in VR with an arm exoskeleton device. Virtual Rehabilitation. 2007, 57-64. Perry JC, Rosen J, Burns S: Upper-Limb powered exoskeleton design. IEEE/ASME Transactions on Mechatronics. 2007, 12 (4): 408-417. Wisneski KK, Johnson MJ: Quantifying kinematics of purposeful movements to real, imagined, or absent functional objects: Implications for modelling trajectories for robot-assisted ADL tasks. Journal of NeuroEngineering and Rehabilitation. 2007, 4: 7- Kousidou S, Tsagarakis NG, Smith C, Caldwell DG: Task-orientated biofeedback system for the rehabilitation of the upper limb. IEEE 10th International Conference on Rehabilitation Robotics, 13–15 June ICORR. 2007, 376-384. Tsagarakism NG, Caldwell DG: Development and control of a "soft-actuated" exoskeleton for use in physiotherapy and training. Autonomous Robots. 2003, 15: 21-33. Zhang LQ, Park HS, Ren Y: Developing an intelligent robotic arm for stroke rehabilitation. IEEE 10th International Conference on Rehabilitation Robotics, ICORR. 2007, 984-993. Loureiro RCV, Harwin WS: Reach & grasp therapy: design and control of a 9-DOF robotic neuro-rehabilitation system. IEEE 10th International Conference on Rehabilitation Robotics, 13–15 June ICORR. 2007, 757-763. Krebs H, Volpe B, Williams D, Celestino J, Charles S, Lynch D, Hogan N: Robot-aided neurorehabilitation: a robot for wrist rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2007, 15 (3): 327-335. Mayhew D, Bachrach B, Rymer WZ, Beer RF: Development of the MACARM – a novel cable robot for upper limb neurorehabilitation. Proceedings of the 9th International Conference on Rehabilitation Robotics, ICORR. 2005, 299-302. Sugar TG, He J, Koeneman EJ, Koeneman JB, Herman R, Huang H, Schultz RS, Herring DE, Wanberg J, Balasubramanian S, Swenson P, Ward JA: Design and control of RUPERT: A device for robotic upper extremity repetitive therapy. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2007, 15 (3): 336-346. Peshkin M, Brown DA, Santos-Munné JJ, Makhlin A, Lewis E, Colgate JE, Patton J, Schwandt D: KineAssist: A robotic overground gait and balance training device. Proceedings of the 2005 IEEE 9th International Conference on Rehabilitation Robotics. 2005, 241-246. Steger R, Kim SH, Kazerooni H: Control scheme and networked control architecture for the Berkeley lower extremity exoskeleton (BLEEX). Proceedings 2006 IEEE International Conference on Robotics and Automation, ICRA. 2006, 3469-3476. Hayashi T, Kawamoto H, Sankai Y: Control method of robot suit HAL working as operator's muscle using biological and dynamical information. IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS. 2005, 3063-3068. Miyoshi T, Hiramatsu K, Yamamoto SI, Nakazawa K, Akai M: Robotic gait trainer in water: Development of an underwater gait-training orthosis. Disabil Rehabil. 2008, 30 (2): 81-87. Agrawal SK, Banala SK, Fattah A: A gravity balancing passive exoskeleton for the human leg. Proceedings of Robotics: Science and Systems. 2006 Stienen AHA, Hekman EEG, Helm Van der FCT, Prange GB, Jannink MJA, Aalsma AMM, Kooij Van der H: Dampace: dynamic force-coordination trainer for the upper extremities. IEEE 10th International Conference on Rehabilitation Robotics, ICORR. 2007, 820-826. Rosati G, Gallina P, Masiero S: Design, implementation and clinical tests of a wire-based robot for neurorehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2007, 15 (4): 560-569. Vallery H, Ekkelenkamp R, Kooij van der H, Buss M: Passive and accurate torque control of series elastic actuators. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS. 2007, 3534-3538. Lotze M, Braun C, Birbaumer N, Anders S, Cohen LG: Motor learning elicited by voluntary drive. Brain. 2003, 126 (4): 866-872. Perez MA, Lungholt BK, Nyborg K, Nielsen JB: Motor skill training induces changes in the excitability of the leg cortical area in healthy humans. Exp Brain Res. 2004, 159 (2): 197-205. Reinkensmeyer DJ, Kahn LE, Averbuch M, McKenna-Cole AN, Schmit BD, Rymer WZ: Understanding and treating arm movement impairment after chronic brain injury: Progress with the ARM Guides. J Rehabil Res Dev. 2000, 37 (6): 653-662. Hesse S, Kuhlmann H, Wilk J, Tomelleri C, Kirker S: A new electromechanical trainer for sensorimotor rehabilitation of paralysed fingers: A case series in chronic and acute stroke patients. Journal of NeuroEngineering and Rehabilitation. 2008, 5: 21- Poon CS: Sensorimotor learning and information processing by Bayesian internal models. Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEMBS. 2004, 4481-2. Rossini PM, Dal Forno G: Integrated technology for evaluation of brain function and neural plasticity. Phys Med Rehabil Clin N Am. 2004, 15 (1): 263-306. Marchal-Crespo L, Reinkensmeyer DJ: Effect of robotic guidance on motor learning of a timing task. Proceedings of the Second IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics. 2008 Harkema SJ: Neural plasticity after human spinal cord injury: application of locomotor training to the rehabilitation of walking. The Neuroscientist. 2001, 7 (5): 455-468. Reinkensmeyer DJ: How to retrain movement after neurologic injury: a computational rationale for incorporating robot (or therapist) assistance. Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEMBS. 2003, 1479-1482. Lum PS, Burgar CG, Shor PC, Majmundar M, Loos Van der M: Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch Phys Med Rehabil. 2002, 83 (7): 952-959. Marchal-Crespo L, Reinkensmeyer DJ: Haptic guidance can enhance motor learning of a steering tasks. Journal of motor behaviour. 2008, 40 (6): 545-557. Reinkensmeyer DJ, Housman SJ: "If I can't do it once, why do it a hundred times?": Connecting volition to movement success in a virtual environment motivates people to exercise the arm after stroke. Virtual Rehabilitation. 2007, 44-48. Schmidt RA, Bjork RA: New conceptualizations of practice: common principles in three paradigms suggest new concepts for training. Psychological Science. 1992, 3 (4): 207-217. Israel JF, Campbell DD, Kahn JH, Hornby TG: Metabolic costs and muscle activity patterns during robotic- and therapist-assisted treadmill walking in individuals with incomplete spinal cord injury. Physical Therapy. 2006, 86 (11): 1466-78. Wolbrecht ET, Chan V, Le V, Cramer SC, Reinkensmeyer DJ, Bobrow JE: Real-time computer modeling of weakness following stroke optimizes robotic assistance for movement therapy. 3rd International IEEE/EMBS Conference on Neural Engineering, CNE. 2007, 152-158. Krebs HI, Hogan N, Aisen ML, Volpe BT: Robot-aided neurorehabilitation. Rehabilitation Engineering, IEEE Transactions on. 1998, 6: 75-87. Aisen ML, Krebs HI, Hogan N, McDowell F, Volpe BT: The effect of robot-assisted therapy and rehabilitative training on motor recovery following stroke. Archives of Neurology. 1997, 54 (4): 443-446. Lum PS, Reinkensmeyer DJ, Lehman SL: Robotic assist devices for bimanual physical therapy: preliminary experiments. IEEE Transactions on Rehabilitation Engineering. 1993, 1 (3): 185-191. Lum PS, Lehman SL, Reinkensmeyer DJ: The bimanual lifting rehabilitator: a device for rehabilitating bimanual control in stroke patients. IEEE Transactions on Rehabilitation Engineering. 1995, 3 (2): 166-174. Krebs HI, Palazzolo JJ, Dipietro L, Ferraro M, Krol J, Rannekleiv K, Volpe BT, Hogan N: Rehabilitation robotics: performance-based progressive robot-assisted therapy. Autonomous Robots. 2003, 15: 7-20. Amirabdollahian F, Loureiro R, Gradwell E, Collin C, Harwin W, Johnson G: Multivariate analysis of the Fugl-Meyer outcome measures assessing the effectiveness of GENTLE/S robot-mediated stroke therapy. Journal of NeuroEngineering and Rehabilitation. 2007, 4 (4): Hesse S, Werner C, Pohl M, Rueckriem S, Mehrholz J, Lingnau ML: Computerized arm training improves the motor control of the severely affected arm after stroke: a single-blinded randomized trial in two centers. Stroke. 2005, 36 (9): 1960-6. Hesse S, Schulte-Tigges G, Konrad M, Bardeleben A, Werner C: Robot-assisted arm trainer for the passive and active practice of bilateral forearm and wrist movements in hemiparetic subjects. Arch Phys Med Rehabil. 2003, 84 (6): 915-920. Boian R, Sharma A, Han C, Merians A, Burdea G, Adamovich S, Recce M, Tremaine M, Poizner H: Virtual reality-based post-stroke hand rehabilitation. Proceedings of Medicine Meets Virtual Reality. 2002, 64-70. Brewer BR, Klatzky R, Matsuoka Y: Initial therapeutic results of visual feedback manipulation in robotic rehabilitation. International Workshop on Virtual Rehabilitation. 2006, 160-166. Denève A, Moughamir S, Afilal L, Zaytoon J: Control system design of a 3-DOF upper limbs rehabilitation robot. Computer Methods and Programs in Biomedicine. 2008, 89 (2): 202-214. Toth A, Fazekas G, Arz G, Jurak M, Horvath M: Passive robotic movement therapy of the spastic hemiparetic arm with REHAROB: report of the first clinical test and the follow-up system improvement. 9th International Conference on Rehabilitation Robotics, ICORR 2005. 2005, 127-130. Lambercy O, Dovat L, Gassert R, Burdet E, Teo CL, Milner T: A Haptic Knob for rehabilitation of hand function. Neural Systems and Rehabilitation Engineering, IEEE Transactions on. 2007, 15 (3): 356-366. Masia L, Krebs HI, Cappa P, Hogan N: Design and characterization of hand module for whole-arm rehabilitation following stroke. Mechatronics, IEEE/ASME Transactions on. 2007, 12 (4): 399-407. Jackson AE, Holt RJ, Culmer PR, Makower SG, Levesley MC, Richardson RC, Cozens JA, Williams MM, Bhakta BB: Dual robot system for upper limb rehabilitation after stroke: the design process. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2007, 221: 845-857. Richardson R, Jackson A, Culmer P, Bhakta B, Levesley MC: Pneumatic impedance control of a 3-d.o.f. physiotherapy robot. Advanced Robotics. 2006, 20 (12): 1321-1339. Fischer HC, Stubblefield K, Kline T, Luo X, Kenyon RV, Kamper DG: Hand rehabilitation following stroke: A pilot study of assisted finger extension training in a virtual environment. Topics in Stroke Rehabilitation. 2007, 14: 1-12. Frick EM, Alberts JL: Combined use of repetitive task practice and an assistive robotic device in a patient with subacute stroke. Physical Therapy. 2006, 86 (10): 1378-13. Mayr A, Kofler M, Saltuari L: ARMOR: An electromechanical robot for upper limb training following stroke. A prospective randomised controlled pilot study. Handchirurgie Mikrochirurgie Plastische Chirurgie. 2008, 40: 66-73. Rocon E, Belda-Lois JM, Ruiz AF, Manto M, Moreno JC, Pons JL: Design and validation of a rehabilitation robotic exoskeleton for tremor assessment and suppression. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2007, 15 (3): 367-378. Cai LL, Fong AJ, Otoshi CK, Liang Y, Burdick JW, Roy RR, Edgerton VR: Implications of assist-as-needed robotic step training after a complete spinal cord injury on intrinsic strategies of motor learning. Journal of Neuroscience. 2006, 26 (41): 10564-8. Hesse S, Schmidt H, Werner C: Machines to support motor rehabilitation after stroke: 10 years of experience in Berlin. J Rehabil Res Dev. 2006, 43 (5): 671-678. Yoon J, Ryu J, Lim K: Reconfigurable ankle rehabilitation robot for various exercises. Journal of Robotic Systems. 2005, 22: 15-33. Timoszyk WK, Nessler JA, Acosta C, Roy RR, Edgerton VR, Reinkensmeyer DJ, de Leon R: Hindlimb loading determines stepping quantity and quality following spinal cord transection. Brain Research. 2005, 1050 (1–2): 180-189. Kamnik R, Bajd T: Does unilateral pedaling activate a rhythmic locomotor pattern in the nonpedaling leg in post-stroke hemiparesis?. J Neurophysiol. 2007, 95 (5): 3154-3163. Stauffer Y, Allemand Y, Bouri M, Fournier J, Clavel R, Metrailler P, Brodard R, Reynard F: The WalkTrainer -A New Generation of Walking Reeducation Device Combining Orthoses and Muscle Stimulation. Neural Systems and Rehabilitation Engineering, IEEE Transactions on. 2009, 17: 38-45. Colombo R, Pisano F, Micera S, Mazzone A, Delconte C, Carrozza M, Dario P, Minuco G: Robotic techniques for upper limb evaluation and rehabilitation of stroke patients. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2005, 13 (3): 311-324. Ekkelenkamp R, Veltink P, Stramigioli S, Kooij van der H: Evaluation of a Virtual Model Control for the selective support of gait functions using an exoskeleton. Proceedings of the IEEE 10th International Conference o nRehabilitation Robotics, ICORR. 2007, 693-699. Kahn LE, Zygman ML, Rymer WZ, Reinkensmeyer DJ: Robot-assisted reaching exercise promotes arm movement recovery in chronic hemiparetic stroke: A randomized controlled pilot study. Journal of Neuroengineering and Rehabilitation. 2006, 3 (12): Johnson MJ, Wisneski KJ, Anderson J, Nathan D, Smith RO: Development of ADLER: The Activities of Daily Living Exercise Robot. The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob. 2006, 881-886. Bi S, Ji L, Wang Z: Robot-aided sensorimotor arm training methods based on neurological rehabilitation principles in stroke and brain injury patients. 27th Annual International Conference of the Engineering in Medicine and Biology Society, IEEE-EMBS. 2005, 5025-5027. Ju MS, Lin CC, Lin DH, Hwang IS, Chen SM: A rehabilitation robot with force-position hybrid fuzzy controller: hybrid fuzzy control of rehabilitation robot. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2005, 13 (3): 349-358. Colombo R, Pisano F, Micera S, Mazzone A, Delconte C, Carrozza M, Dario P, Minuco G: Assessing mechanisms of recovery during robot-aided neurorehabilitation of the upper limb. Neurorehabil Neural Repair. 2008, 22: 50-63. Takahashi CD, Der-Yeghiaian L, Le VH, Cramer SC: A robotic device for hand motor therapy after stroke. Proceedings of the 2005 IEEE International Conference on Rehabilitation Robotics. 2005, 17-20. Chang mechanisms of recovery during robot-aided neurorehabilitation of the upper limb JJ, Tung WL, Wu WL, Huang MH, Su FC: Effects of robot-aided bilateral force-induced isokinetic arm training combined with conventional rehabilitation on arm motor function in patients with chronic stroke. Arch Phys Med Rehabil. 2007, 88 (10): 1332-1338. Hogan N, Krebs HI: Interactive robots for neuro-rehabilitation. Restorative Neurology and Neuroscience. 2004, 22 (3–5): 349-358. Dipietro L, Ferraro M, Palazzolo JJ, Krebs HI, Volpe BT, Hogan N: Customized interactive robotic treatment for stroke: EMG-triggered therapy. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2005, 13 (3): 325-334. Sanchez RJ, Liu J, Rao S, Shah P, Smith R, Cramer SC, Bobrow JE, Reinkensmeyer DJ: Automating arm movement training following severe stroke: functional exercises with quantitative feedback in a gravity-reduced environment. IEEE Transactions on Neural and Rehabilitation Engineering. 2006, 14 (3): 378-389. Stienen AHA, Hekman EEG, Helm Van der FCT, Prange GB, Jannink MJA, Aalsma AMM, Kooij Van der H: Freebal: dedicated gravity compensation for the upper extremities. IEEE 10th International Conference on Rehabilitation Robotics, ICORR. 2007, 804-808. Matjacic Z, Hesse S, Sinkjaer T: BalanceReTrainer: A new standing-balance training apparatus and methods applied to a chronic hemiparetic subject with a neglect syndrome. NeuroRehabilitation. 2003, 18 (3): 251-259. Veg A, Popovic DB: Walkaround: Mobile balance support for therapy of walking. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2008, 16 (3): 264-269. Sukal TM, Ellis MD, Dewald JPA: Source of work area reduction following hemiparetic stroke and preliminary intervention using the ACT 3D system. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2006, 177-180. Jackson A, Culmer P, Makower S, Levesley M, Richardson R, Cozens A, Williams MM, Bhakta B: Initial patient testing of iPAM – a robotic system for stroke rehabilitation. IEEE 10th International Conference on Rehabilitation Robotics, ICORR 2007. 2007, 250-256. Mihelj M, Nef T, Riener R: A novel paradigm for patient-cooperative control of upper-limb rehabilitation robots. Advanced Robotics. 2007, 21 (8): 843-867. Frey M, Colombo G, Vaglio M, Bucher R, Jorg M, Riener R: A novel mechatronic body weight support system. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2006, 14 (3): 311-321. Reinkensmeyer DJ, Takahashi CD, Timoszyk WK, Reinkensmeyer AN, Kahn LE: Design of robot assistance for arm movement therapy following stroke, invited paper. Advanced Robotics. 2000, 14 (7): 625-638. Song R, Tong KY, Hu X, Li L: Assistive control system using continuous myoelectric signal in robot-aided arm training for patients after stroke. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2008, 16 (4): 371-379. Stein J, Narendran K, McBean J, Krebs K, Hughes R: Electromyography-controlled exoskeletal upper-limb-powered orthosis for exercise training after stroke. American Journal of Physical Medicine & Rehabilitation. 2007, 86 (4): 255-261. Li Q, Wang D, Du Z, Sun L: A novel rehabilitation system for upper limbs. 27th Annual International Conference of the Engineering in Medicine and Biology Society, IEEE-EMBS. 2005, 6840-6843. Ferris DP, Czerniecki JM, Hannaford B: An ankle-foot orthosis powered by artificial pneumatic muscles. Journal of Applied Biomechanics. 2005, 21 (2): 189-197. Kang SJ, Ryu JC, Ryu JW, Kim KH, Mun MS: A real-time control of powered gait orthosis by bio signal. Proceedings of the 11th World Congress of the International Societyfor Prosthetics and Orthotics, Hong Kong. 2004 Kahn LE, Rymer WZ, Reinkensmeyer DJ: Adaptive assistance for guided force training in chronic stroke. Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society Meeting, IEMBS. 2004, 2272-2725. Erol D, Sarkar N: Intelligent control for robotic rehabilitation after stroke. Journal of Intelligent and Robotic Systems. 2007, 50 (4): 341-360. von Zitzewitz J, Bernhardt M, Riener R: A novel method for automatic treadmill speed adaptation. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2007, 15 (3): 401-409. Emken JL, Harkema SJ, Beres-Jones J, Ferreira CK, Reinkensmeyer DJ: Feasibility of manual teach-and-replay and continuous impedance shaping for robotic locomotor training following spinal cord injury. IEEE Transactions of Biomedical Engineering. 2008, 55: 322-334. Reinkensmeyer DJ, Liu J, Emken JL, Bobrow JE: The nervous system appears to minimize a weighted sum of kinematic error, force, and change in force when adapting to viscous environments during reaching and steppings. III Symp in Advances in Computational Motor Control. 2004, [http://acmc.conference.googlepages.com/2004reinkensmeyer.pdf] Blaya JA, Herr H: Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait. IEEE Trans Neural Syst Rehabil Eng. 2004, 12 (1): 24-31. Emken JL, Bobrow JE, Reinkensmeyer DJ: Robotic movement training as an optimization problem: Designing a controller that assists only as needed. IEEE 9th International Conference on Rehabilitation Robotics, ICORR. 2005, 307-312. Slotine JJE, Li W: Applied nonlinear control. 1991, NJ: Prentice Hall Rosati G, Bobrow JE, Reinkensmeyer DJ: Compliant control of post-stroke rehabilitation robots: using movement-specific models to improve controller performance. Proceedings of the ASME International Mechanical Engineering Congress & Exposition IMECE 2008. 2008, Boston, MA, USA Vallery H, van Asseldonk EHF, Buss M, Kooij van der H: Reference Trajectory Generation for Rehabilitation Robots: Complementary Limb Motion Estimation. 2009, 17: 23-30. Kautz SA, Patten C: Interlimb influences on paretic leg function in poststroke hemiparesis. Journal of Neurophysiology. 2005, 93 (5): Lum PS, Burgar CG, Shor PC: Evidence for improved muscle activation patterns after retraining of reaching movements with the MIME robotic system in subjects with post-stroke hemiparesis. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2004, 12 (2): 186-194. Wolbrecht E: Adaptive, assist-as-needed control of a pneumatic orthosis for optimizing robotic movement therapy following stroke. PhD thesis. 2007, University of California, Irvine – Mechanical and Aerospace Engineering Erol D, Sarkar N: Smooth human-robot interaction in robot-assisted rehabilitation. IEEE 10th International Conference on Rehabilitation Robotics, ICORR. 2007, 5-15. Kamper DG, Harvey RL, Suresh S, Rymer WZ: Relative contributions of neural mechanisms versus muscle mechanics in promoting finger extension deficits following stroke. Muscle Nerve. 2003, 28 (3): 309-318. Daly J, Wolpaw J: Brain-computer interfaces in neurological rehabilitation. Lancet Neurol. 2008, 7 (11): Guadagnoli M, Lee T: Challenge point: a framework for conceptualizing the effects of various practice conditions in motor learning. J Mot Behav. 2004, 36 (2): 212-224. Voss DE, Ionta MK, Meyers BJ: Proprioceptive Neurofacilitation: Patterns & Techniques. 1985, PHILADELPHIA, PENNSYLVANIA: Harper & Rowe Patterson LA, Spivey WE: Validity and reliability of the LIDO active isokinetic system. Journal of Orthopaedic Sports Physical Therapy. 1992, 15: 32-36. Feiring DC, Ellenbecker TS, Dersheid GL: Test-retest reliability of the Biodex isokinetic dynamometer. Journal of Orthopaedic Sports Physical Therapy. 1990, 11 (7): 298-300. Weiss A, Suzuki T, Bean J, Fielding RA: High intensity strength training improves strength and functional performance after stroke. Am J Phys Med Rehabil. 2000, 79 (4): 369-76. Ouellette MM, LeBrasseur NK, Bean JF, Phillips E, Stein J, Frontera WR, Fielding RA: High-intensity resistance training improves muscle strength, self-reported function, and disability in long-term stroke survivors. Stroke. 2004, 35 (6): 1404-1409. Morris SL, Dodd KJ, Morris ME: Outcomes of progressive resistance strength training following stroke: a systematic review. Clinical Rehabilitation. 2004, 18: 27-39. Patten C, Dozono J, Schmidt S, Jue M, Lum P: Combined functional task practice and dynamic high intensity resistance training promotes recovery of upper-extremity motor function in post-stroke hemiparesis: a case study. Journal of Neurologic Physical Therapy. 2006, 30 (3): 99-115. Mercier C, Bourbonnais D, Bilodeau S, Lemay JF, Cross P: Description of a new motor re-education programme for the paretic lower limb aimed at improving the mobility of stroke patients. Clinical Rehabilitation. 1999, 13 (3): 199-206. Lam T, Wirz M, Lüunenburger L, Dietz V: Swing phase resistance enhances flexor muscle activity during treadmill locomotion in incomplete spinal cord injury. Neurorehabil Neural Repair. 2008, 22 (5): 438-446. Ellis MD, Sukal T, DeMott T, Dewald JPA: Augmenting Clinical Evaluation of Hemiparetic Arm Movement With a Laboratory-Based Quantitative Measurement of Kinematics as a Function of Limb Loading. Neurorehabil Neural Repair. 2008, 22 (4): 321-329. Shaw SE, Morris DM, Uswatte G, McKay S, Meythaler JM, Taub E: Constraint-induced movement therapy for recovery of upper-limb function following traumatic brain injury. J Rehabil Res Dev. 2005, 42 (6): 769-778. Johnson MJ, Loos Van der HFM, Burgar CG, Shor P, Leifer LJ: Design and evaluation of Driver's SEAT: A car steering simulation environment for upper limb stroke therapy. Robotica. 2003, 21: 13-23. Simon AM, Gillespie RB, Ferris DP: Symmetry-based resistance as a novel means of lower limb rehabilitation. Journal of Biomechanics. 2007, 40 (6): 1286-1292. Emken JL, Reinkensmeyer DJ: Robot-Enhanced motor learning: accelerating internal model formation during locomotion by transient dynamic amplification. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2005, 13: 33-39. Patton JL, Stoykov ME, Kovic M, Mussa-Ivaldi FA: Evaluation of robotic training forces that either enhance or reduce error in chronic hemiparetic stroke survivors. Experimental Brain Research. 2006, 168 (3): 368-383. Reisman DS, Wityk R, Silver K, Bastian AJ: Locomotor adaptation on a split-belt treadmill can improve walking symmetry post-stroke. Brain. 2007, 130 (7): 1861-1872. Patton JL, Kovic M, Mussa-Ivaldi FA: Custom-designed haptic training for restoring reaching ability to individuals with poststroke hemiparesis. J Rehabil Res Dev. 2006, 43 (5): 643-56. Wei Y, Bajaj P, Scheidt R, Patton J: Visual error augmentation for enhancing motor learning and rehabilitative relearning. 9th International Conference on Rehabilitation Robotics, ICORR. 2005, 505-510. Brewer BR, Klatzky R, Matsuoka Y: Visual feedback distortion in a robotic environment for hand rehabilitation. Brain Research Bulletin. 2008, 75 (6): 804-813. Patton JL, Dawe G, Scharver C, Mussa-Ivaldi FA, Kenyon R: Robotics and virtual reality: the development of a life-sized 3-D system for the rehabilitation of motor function. 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEMBS. 2004, 4840-4843. Burdea GC: Virtual rehabilitation-benefits and challenges. Methods of Information in Medicine. 2003, 42 (5): 519-23. Adamovich SV, Merians AS, Boian R, Tremaine M, Burdea GS, Recce M, Poizner H: A virtual reality based exercise system for hand rehabilitation post-stroke: transfer to function. 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEMBS. 2004, 4936-4939. Broeren J, Georgsson M, Rydmark M, Sunnerhagen KS: Virtual reality in stroke rehabilitation with the assistance of haptics and telemedicine. Proceedings of the 4th International Conference on Disability, Virtual Reality and Associated Technologies. 2002, 71-76. McLaughlin M, Rizzo A, Jung Y, Peng W, Yeh SC, Zhu W: Haptics-enhanced virtual environments for stroke rehabilitation. Procedings on IPSI 2005. 2005, Cambridge, MA Carignan C, Liszka M, Roderick S: Design of an arm exoskeleton with scapula motion for shoulder rehabilitation. Proceedings on the 12th International Conference on Advanced Robotics, ICAR. 2005, 524-531. Reinkensmeyer D, Pang C, Nessler J, Painter C: Web-based telerehabilitation for the upper extremity after stroke. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2002, 10 (2): 102-108. Fung J, Malouin F, McFadyen BJ, Comeau F, Lamontagne A, Chapdelaine S, Beaudoin C, Laurendeau D, Hughey L, Richards CL: Locomotor rehabilitation in a complex virtual environment. Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEMBS. 2004, 4859-4861. Boian RF, Deutsch JE, Su Lee C, Burdea GC, Lewis J: Haptic effects for virtual reality-based post-stroke rehabilitation. Proceedings on the 11th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, HAPTICS. 2003, 247-253. Reeves B, Nass C: The Media Equation: How People Treat Computers, Television, and New Media Like Real People and Places. 1998, New York, NY: Cambridge University Press Huang VS, Shadmehr R, Diedrichsen J: Active learning: learning a motor skill without a coach. Journal of Neurophysiology. 2008, 100 (2): 879-887. Reinkensmeyer DJ, Patton JL: Can robots help the learning of skilled actions?. Exercise and Sports Sciences Reviews. 2009, 37: 43-51. Prange GB, Jannink MJ, Groothuis-Oudshoorn CG, Hermens HJ, Ijzerman MJ: Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke. J Rehabil Res Dev. 2006, 43 (2): 171-84. Ferraro M, Palazzolo JJ, Krol J, Krebs HI, Hogan N, Volpek BT: Robot-aided sensorimotor arm training improves outcome in patients with chronic stroke. Neurology. 2003, 61: 1604-1607. Meyer-Heim A, Borggraefe I, Ammann-Reiffer C, Berweck S, Sennhauser FH, Colombo G, Knecht B, Heinen F: Feasibility of robotic-assisted locomotor training in children with central gait impairment. Dev Med Child Neurol. 2007, 49 (12): 900-906. Wirz M, Zemon DH, Rupp R, Scheel A, Colombo G, Dietz V, Hornby TG: Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: a multicenter trial. Arch Phys Med Rehabil. 2005, 86 (4): 672-680. Macclellan LR, Bradham DD, Whitall J, Volpe B, Wilson PD, Ohlhoff J, Meister C, Hogan N, Krebs HI, Bever CTJ: Robotic upper-limb neurorehabilitation in chronic stroke patients. J Rehabil Res Dev. 2005, 42 (6): 717-22. Finley MA, Fasoli SE, Dipietro L, Ohlhoff J, Macclellan L, Meister C, Withall J, Macko R, Bever C, Krebs HI, Hogan N: Short-duration robotic therapy in stroke patients with severe upper-limb motor impairment. J Rehabil Res Dev. 2005, 42 (5): 683-691. Krebs H, Dipietro L, Levy-Tzedek S, Fasoli S, Rykman-Berland A, Zipse J, Fawcett J, Stein J, Poizner H, Lo A, Volpe B, Hogan N: A paradigm shift for rehabilitation robotics. IEEE Engineering in Medicine and Biology Magazine. 2008, 27 (4): 61-70. Takahashi CD, Der-Yeghiaian L, Vu L, Motiwala RR, Cramer SC: Robot-based hand motor therapy after stroke. Brain. 2008, 131 (Pt 2): 425-437. Pohl M, Werner C, Holzgraefe M, Kroczek G, Mehrholz J, Wingendorf I, Hooelig G, Koch R, Hesse S: Repetitive locomotor training and physiotherapy improve walking and basic activities of daily living after stroke: a single-blind, randomized multicentre trial (DEutsche GAngtrainerStudie, DEGAS). Clinical Rehabilitation. 2007, 21: 17-27. Husemann B, Mueller F, Krewer C, Heller S, Koenig E: Effects of locomotion training with assistance of a robot-driven gait orthosis in hemiparetic patients after stroke: a randomized controlled pilot study. Stroke. 2007, 38 (2): 349-54. Mayr A, Kofler M, Quirbach E, Matzak H, Frohlich K, Saltuari L: Prospective, blinded, randomized crossover study of gait rehabilitation in stroke patients using the lokomat gait orthosis. Neurorehabil Neural Repair. 2007, 21 (4): 307-314. Kwakkel G, Kollen BJ, Krebs HI: Effects of Robot-Assisted Therapy on Upper Limb Recovery After Stroke: A Systematic Review. Neurorehabil Neural Repair. 2008, 22 (2): 111-121. Lum PS, Burgar CG, Loos Van der M, Shor PC, Majmundar M, Yap R: Links MIME robotic device for upper-limb neurorehabilitation in subacute stroke subjects: A follow-up study. J Rehabil Res Dev. 2006, 43 (5): 631-42. Stein J, Krebs HI, Frontera WR, Fasoli SE, Hughes R, Hogan N: Comparison of two techniques of robot-aided upper limb exercise training after stroke. Am J Phys Med Rehabil. 2004, 83 (9): 720-728. Housman SJ, Scott K, Reinkensmeyer DJ: A Randomized Controlled Trial of Gravity-Supported, Computer-Enhanced Arm Exercise for Individuals With Severe Hemiparesis. Neurorehabilitation Neural Repair. 2009, 505-514. 5 Coote S, Murphy B, Harwin W, Stokes E: The effect of the GENTLE/s robot-mediated therapy system on arm function after stroke. Clinical Rehabilitation. 2008, 22 (5): 395-405. Hesse S, Werner C, Uhlenbrock D, Frankenberg SV, Bardeleben A, Brandl-Hesse B: An electromechanical gait trainer for restoration of gait in hemiparetic stroke patients: Preliminary results. Neurorehabil Neural Repair. 2001, 15 (1): 39-50. Hornby TG, Campbell DD, Kahn JH, Demott T, Moore JL, Roth HR: Enhanced gait-related improvements after therapist- versus robotic-assisted locomotor training in subjects with chronic stroke: a randomized controlled study. Stroke. 2008, 39 (6): 1786-92. Hidler J, Nichols D, Pelliccio M, Brady K, Campbell D, Kahn J, Hornby T: Multicenter randomized clinical trial evaluating the effectiveness of the Lokomat in subacute stroke. Neurorehabil Neural Repair. 2009, 23: 5-13. Fischer H, Kahn L, Pelosin E, Roth H, Barbas J, Rymer W, Reinkensmeyer D: Can Robot-Assisted Therapy Promote Generalization of Motor Learning Following Stroke?: Preliminary Results. The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob. 2006, 865-868. Krebs HI, Mernoff S, Fasoli SE, Hughes R, Stein J, Hogan N: A comparison of functional and impairment-based robotic training in severe to moderate chronic stroke: a pilot study. NeuroRehabilitation. 2008, 23: 81-87. Sugarman H, Dayan E, Lauden A, Weisel-Eichler A, Tiran J: Investigating the use of force feedback joysticks for low-cost, robot-mediated therapy. International Journal on Disability and Human Development. 2008, 7: 95-100. Deutsch JA, Lewis JA, Whitworth E, Boian R, Burdea G, Tremaine M: Formative evaluation and preliminary findings of a virtual reality telerehabilitation system for the lower extremity. Presence: Teleoperators and Virtual Environments. 2005, 14 (2): 198-213. Mirelman A, Bonato P, Deutsch J: Effects of training with a robot-virtual reality system compared with a robot alone on the gait of individuals after stroke. Stroke. 2009, 40: 169-74. Kahn LE, Lum PS, Rymer WZ, Reinkensmeyer DJ: Robot-assisted movement training for the stroke-impaired arm: Does it matter what the robot does?. J Rehabil Res Dev. 2006, 43 (5): 619-630.