Review of Membrane Separation Models and Technologies: Processing Complex Food-Based Biomolecular Fractions

Springer Science and Business Media LLC - Tập 14 - Trang 415-428 - 2021
Subin R. C. K. Rajendran1,2, Beth Mason2, Alan A. Doucette1
1Department of Chemistry, Dalhousie University, Halifax, Canada
2Verschuren Centre for Sustainability in Energy and the Environment, Sydney, Canada

Tóm tắt

There is growing interest in the food industry to develop approaches for large-scale production of bioactive molecules through continuous downstream processing, especially from sustainable sources. Membrane-based separation technologies have the potential to reduce production costs while incorporating versatile multiproduct processing capabilities. This review describes advances in membrane technologies that may facilitate versatile and effective isolation of bioactive compounds. The benefits and drawbacks of pressure-driven membrane cascades, functionalized membranes and electromembrane separation technologies are highlighted, in the context of their applications in the food industry. Examples illustrate the separation of functional macromolecules (peptides, proteins, oligo/polysaccharides, plant secondary metabolites) from complex food-based streams. Theoretical and mechanistic models of membrane flux and fouling are also summarized. Overcoming existing challenges of these technologies will provide the food industry with several attractive options for bioprocessing operations.

Tài liệu tham khảo

Bargeman, G., Koops, G.-H., Houwing, J., Breebaart, I., van der Horst, H. C., & Wessling, M. (2002). The development of electro-membrane filtration for the isolation of bioactive peptides: The effect of membrane selection and operating parameters on the transport rate. Desalination, 149(1), 369–374. https://doi.org/10.1016/S0011-9164(02)00824-X. Bdiri, M., Dammak, L., Chaabane, L., Larchet, C., Hellal, F., Nikonenko, V., & Pismenskaya, N. D. (2018). Cleaning of cation-exchange membranes used in electrodialysis for food industry by chemical solutions. Separation and Purification Technology, 199, 114–123. https://doi.org/10.1016/j.seppur.2018.01.056. Bdiri, M., Dammak, L., Larchet, C., Hellal, F., Porozhnyy, M., Nevakshenova, E., Pismenskaya, N., & Nikonenko, V. (2019). Characterization and cleaning of anion-exchange membranes used in electrodialysis of polyphenol-containing food industry solutions; comparison with cation-exchange membranes. Separation and Purification Technology, 210, 636–650. https://doi.org/10.1016/j.seppur.2018.08.044. Bildyukevich, A. V., Plisko, T. V., Lipnizki, F., & Pratsenko, S. A. (2020). Correlation between membrane surface properties, polymer nature and fouling in skim milk ultrafiltration. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 605, 125387. https://doi.org/10.1016/j.colsurfa.2020.125387. Binabaji, E., Ma, J., Rao, S., & Zydney, A. L. (2015). Theoretical analysis of the ultrafiltration behavior of highly concentrated protein solutions. Journal of Membrane Science, 494, 216–223. https://doi.org/10.1016/j.memsci.2015.07.068. Binahmed, S., Hasane, A., Wang, Z., Mansurov, A., & Romero-Vargas Castrillón, S. (2018). Bacterial adhesion to ultrafiltration membranes: Role of hydrophilicity, natural organic matter, and cell-surface macromolecules. Environmental Science and Technology, 52(1), 162–172. https://doi.org/10.1021/acs.est.7b03682. Brisson, G., Britten, M., & Pouliot, Y. (2007). Electrically-enhanced crossflow microfiltration for separation of lactoferrin from whey protein mixtures. Journal of Membrane Science, 297(1–2), 206–216. https://doi.org/10.1016/J.MEMSCI.2007.03.046. Caus, A., Braeken, L., Boussu, K., & Van der Bruggen, B. (2009). The use of integrated countercurrent nanofiltration cascades for advanced separations. Journal of Chemical Technology & Biotechnology, 84(3), 391–398. https://doi.org/10.1002/jctb.2052. Chamberland, J., Beaulieu-Carbonneau, G., Lessard, M.-H., Labrie, S., Bazinet, L., Doyen, A., & Pouliot, Y. (2017). Effect of membrane material chemistry and properties on biofouling susceptibility during milk and cheese whey ultrafiltration. Journal of Membrane Science, 542, 208–216. https://doi.org/10.1016/J.MEMSCI.2017.08.012. Chuang, C.-J., Wu, C.-Y., & Wu, C.-C. (2008). Combination of crossflow and electric field for microfiltration of protein/microbial cell suspensions. Desalination, 233(1–3), 295–302. https://doi.org/10.1016/J.DESAL.2007.09.054. Cifuentes-Araya, N., Pourcelly, G., & Bazinet, L. (2012). Multistep mineral fouling growth on a cation-exchange membrane ruled by gradual sieving effects of magnesium and carbonate ions and its delay by pulsed modes of electrodialysis. Journal of Colloid and Interface Science, 372(1), 217–230. https://doi.org/10.1016/J.JCIS.2011.12.067. Cissé, M., Vaillant, F., Pallet, D., & Dornier, M. (2011). Selecting ultrafiltration and nanofiltration membranes to concentrate anthocyanins from roselle extract (Hibiscus sabdariffa L.). Food Research International, 44(9), 2607–2614. https://doi.org/10.1016/j.foodres.2011.04.046. Córdova, A., Astudillo, C., Santibañez, L., Cassano, A., Ruby-Figueroa, R., & Illanes, A. (2017). Purification of galacto-oligosaccharides (GOS) by three-stage serial nanofiltration units under critical transmembrane pressure conditions. Chemical Engineering Research and Design, 117, 488–499. https://doi.org/10.1016/j.cherd.2016.11.006. Doyen, A., Beaulieu, L., Saucier, L., Pouliot, Y., & Bazinet, L. (2011). Impact of ultrafiltration membrane material on peptide separation from a snow crab byproduct hydrolysate by electrodialysis with ultrafiltration membranes. Journal of Agricultural and Food Chemistry, 59(5), 1784–1792. https://doi.org/10.1021/jf103739m. Doyen, A., Husson, E., & Bazinet, L. (2013a). Use of an electrodialytic reactor for the simultaneous β-lactoglobulin enzymatic hydrolysis and fractionation of generated bioactive peptides. Food Chemistry, 136(3–4), 1193–1202. https://doi.org/10.1016/J.FOODCHEM.2012.09.018. Doyen, A., Roblet, C., Beaulieu, L., Saucier, L., Pouliot, Y., & Bazinet, L. (2013b). Impact of water splitting phenomenon during electrodialysis with ultrafiltration membranes on peptide selectivity and migration. Journal of Membrane Science, 428, 349–356. https://doi.org/10.1016/J.MEMSCI.2012.10.036. Durand, R., Fraboulet, E., Marette, A., & Bazinet, L. (2019). Simultaneous double cationic and anionic molecule separation from herring milt hydrolysate and impact on resulting fraction bioactivities. Separation and Purification Technology, 210, 431–441. https://doi.org/10.1016/j.seppur.2018.08.017. Etzel, M. R., & Arunkumar, A. (2009). Charged ultrafiltration and microfiltration membranes in antibody purification. In Process scale purification of antibodies (pp. 325–347). Hoboken: Wiley. https://doi.org/10.1002/9780470444894.ch16. Firdaous, L., Dhulster, P., Amiot, J., Gaudreau, A., Lecouturier, D., Kapel, R., Lutin, F., Vézina, L. P., & Bazinet, L. (2009). Concentration and selective separation of bioactive peptides from an alfalfa white protein hydrolysate by electrodialysis with ultrafiltration membranes. Journal of Membrane Science, 329(1–2), 60–67. https://doi.org/10.1016/J.MEMSCI.2008.12.012. Galanakis, C. M. (2015). Separation of functional macromolecules and micromolecules: From ultrafiltration to the border of nanofiltration. Trends in Food Science & Technology, 42(1), 44–63. https://doi.org/10.1016/J.TIFS.2014.11.005. Gunderson, S. S., Brower, W. S., O’Dell, J. L., & Lightfoot, E. N. (2007). Design of membrane cascades. Separation Science and Technology, 42(10), 2121–2142. https://doi.org/10.1080/01496390701444121. Habibi, S., Rabiller-Baudry, M., Lopes, F., Bellet, F., Goyeau, B., Rakib, M., & Couallier, E. (2020). New insights into the structure of membrane fouling by biomolecules using comparison with isotherms and ATR-FTIR local quantification. Environmental Technology, 1–18. https://doi.org/10.1080/09593330.2020.1783370. Hahn, T., Huuk, T., Osberghaus, A., Doninger, K., Nath, S., Hepbildikler, S., Heuveline, V., & Hubbuch, J. (2016). Calibration-free inverse modeling of ion-exchange chromatography in industrial antibody purification. Engineering in Life Sciences, 16(2), 107–113. https://doi.org/10.1002/elsc.201400248. Hanspal, N. S., Waghode, A. N., Nassehi, V., & Wakeman, R. J. (2009). Development of a predictive mathematical model for coupled Stokes/Darcy flows in cross-flow membrane filtration. Chemical Engineering Journal, 149(1–3), 132–142. https://doi.org/10.1016/J.CEJ.2008.10.012. Henaux, L., Thibodeau, J., Pilon, G., Gill, T., Marette, A., & Bazinet, L. (2019). How charge and triple size-selective membrane separation of peptides from Salmon protein hydrolysate orientate their biological response on glucose uptake. International Journal of Molecular Sciences, 20(8). https://doi.org/10.3390/ijms20081939. Houldsworth, D. W. (1980). Demineralization of whey by means of ion exchange and electrodialysis. International Journal of Dairy Technology, 33(2), 45–51. https://doi.org/10.1111/j.1471-0307.1980.tb01470.x. Hung, J. J., Borwankar, A. U., Dear, B. J., Truskett, T. M., & Johnston, K. P. (2016). High concentration tangential flow ultrafiltration of stable monoclonal antibody solutions with low viscosities. Journal of Membrane Science, 508, 113–126. https://doi.org/10.1016/j.memsci.2016.02.031. Husson, E., Araya-Farias, M., Gagné, A., & Bazinet, L. (2013). Selective anthocyanins enrichment of cranberry juice by electrodialysis with filtration membrane: Influence of membranes characteristics. Journal of Membrane Science, 448, 114–124. https://doi.org/10.1016/J.MEMSCI.2013.06.061. Jungbauer, A., & Hahn, R. (2008). Polymethacrylate monoliths for preparative and industrial separation of biomolecular assemblies. Journal of Chromatography A. Elsevier., 1184(1-2), 62–79. https://doi.org/10.1016/j.chroma.2007.12.087. Kasemset, S., Wang, L., He, Z., Miller, D. J., Kirschner, A., Freeman, B. D., & Sharma, M. M. (2017). Influence of polydopamine deposition conditions on hydraulic permeability, sieving coefficients, pore size and pore size distribution for a polysulfone ultrafiltration membrane. Journal of Membrane Science, 522, 100–115. https://doi.org/10.1016/j.memsci.2016.07.016. Katz, W. E. (1979). The electrodialysis reversal (EDR) process. Desalination, 28(1), 31–40. https://doi.org/10.1016/S0011-9164(00)88124-2. Kravtsov, V. A., Kulikova, I. K., Bessonov, A. S., & Evdokimov, I. A. (2019). Feasibility of using electrodialysis with bipolar membranes to deacidify acid whey. International Journal of Dairy Technology, 73(1), 261–269. https://doi.org/10.1111/1471-0307.12637. Ladewig, B., & Al-Shaeli, M. N. Z. (2017). Surface modification of polyethersulfone membranes. In Fundamentals of membrane bioreactors (1st ed., pp. 87–129). Springer Nature Singapore Pvt. Ltd.. https://doi.org/10.1007/978-981-10-2014-8_4. Lightfoot, E. N. (2005). Can membrane cascades replace chromatography? Adapting binary ideal cascade theory of systems of two solutes in a single solvent. Separation Science and Technology, 40(4), 739–756. https://doi.org/10.1081/SS-200047994. Lightfoot, E. N., Root, T. W., & O’Dell, J. L. (2008). Emergence of ideal membrane cascades for downstream processing. Biotechnology Progress, 24(3), 599–605. https://doi.org/10.1021/bp070335l. Liu Y, Huang H, Huo P, Gu L (2017) Exploration of zwitterionic cellulose acetate antifouling ultrafiltration membrane for bovine serum albumin (BSA) separation. Carbohydrate Polymers 165:266–275 Ma, J., Qin, L., Zhang, X., & Huang, H. (2016). Temporal evolution of the selectivity-permeability relationship during porous membrane filtration of protein solutions. Journal of Membrane Science, 514, 385–397. https://doi.org/10.1016/j.memsci.2016.05.022. MacKe, S., Jerz, G., Empl, M. T., Steinberg, P., & Winterhalter, P. (2012). Activity-guided isolation of resveratrol oligomers from a grapevine-shoot extract using countercurrent chromatography. Journal of Agricultural and Food Chemistry, 60(48), 11919–11927. https://doi.org/10.1021/jf3030584. Malczewska, B., & Żak, A. (2019). Structural changes and operational deterioration of the Uf polyethersulfone (Pes) membrane due to chemical cleaning. Scientific Reports, 9(1), 1–14. https://doi.org/10.1038/s41598-018-36697-2. Mayani, M., Filipe, C. D. M., & Ghosh, R. (2010). Cascade ultrafiltration systems—Integrated processes for purification and concentration of lysozyme. Journal of Membrane Science, 347(1–2), 150–158. https://doi.org/10.1016/J.MEMSCI.2009.10.016. Mehta, A., & Zydney, A. L. (2005). Permeability and selectivity analysis for ultrafiltration membranes. Journal of Membrane Science, 249(1-2), 245–249. https://doi.org/10.1016/j.memsci.2004.09.040. Mohan, A., Rajendran, S. R. C. K., Thibodeau, J., Bazinet, L., & Udenigwe, C. C. (2018). Liposome encapsulation of anionic and cationic whey peptides: Influence of peptide net charge on properties of the nanovesicles. LWT, 87, 40–46. https://doi.org/10.1016/J.LWT.2017.08.072. Nassehi, V. (1998). Modelling of combined Navier–Stokes and Darcy flows in crossflow membrane filtration. Chemical Engineering Science, 53(6), 1253–1265. https://doi.org/10.1016/S0009-2509(97)00443-0. Ndiaye, N., Pouliot, Y., Saucier, L., Beaulieu, L., & Bazinet, L. (2010). Electroseparation of bovine lactoferrin from model and whey solutions. Separation and Purification Technology, 74(1), 93–99. https://doi.org/10.1016/j.seppur.2010.05.011. Nevakshenova, E. E., Sarapulova, V. V., Nikonenko, V. V., & Pismenskaya, N. D. (2019). Application of sodium chloride solutions to regeneration of anion-exchange membranes used for improving grape juices and wines. Membranes and Membrane Technologies, 1(1), 14–22. https://doi.org/10.1134/s2517751619010062. Ng, K. S. Y., Dunstan, D. E., & Martin, G. J. O. (2018). Influence of processing temperature on flux decline during skim milk ultrafiltration. Separation and Purification Technology, 195, 322–331. https://doi.org/10.1016/j.seppur.2017.12.029. Nor, M. Z. M., Ramchandran, L., Duke, M., & Vasiljevic, T. (2016). Separation of bromelain from crude pineapple waste mixture by a two-stage ceramic ultrafiltration process. Food and Bioproducts Processing, 98, 142–150. https://doi.org/10.1016/J.FBP.2016.01.001. Oussedik, S., Belhocine, D., Grib, H., Lounici, H., Piron, D. L., & Mameri, N. (2000). Enhanced ultrafiltration of bovine serum albumin with pulsed electric field and fluidized activated alumina. Desalination, 127(1), 59–68. https://doi.org/10.1016/S0011-9164(99)00192-7. Patil, N. V., Janssen, A. E. M., & Boom, R. M. (2014). The potential impact of membrane cascading on downstream processing of oligosaccharides. Chemical Engineering Science, 106, 86–98. https://doi.org/10.1016/J.CES.2013.11.007. Persico, M., & Bazinet, L. (2018). Fouling prevention of peptides from a tryptic whey hydrolysate during electromembrane processes by use of monovalent ion permselective membranes. Journal of Membrane Science, 549, 486–494. https://doi.org/10.1016/J.MEMSCI.2017.12.021. Persico, M., Daigle, G., Kadel, S., Perreault, V., Pellerin, G., Thibodeau, J., & Bazinet, L. (2020). Predictive models for determination of peptide fouling based on the physicochemical characteristics of filtration membranes. Separation and Purification Technology, 240, 116602. https://doi.org/10.1016/j.seppur.2020.116602. Picot, L., Ravallec, R., Fouchereau-Péron, M., Vandanjon, L., Jaouen, P., Chaplain-Derouiniot, M., Guérard, F., Chabeaud, A., LeGal, Y., Alvarez, O. M., Bergé, J. P., Piot, J. M., Batista, I., Pires, C., Thorkelsson, G., Delannoy, C., Jakobsen, G., Johansson, I., & Bourseau, P. (2010). Impact of ultrafiltration and nanofiltration of an industrial fish protein hydrolysate on its bioactive properties. Journal of the Science of Food and Agriculture, 90(11), 1819–1826. https://doi.org/10.1002/jsfa.4020. Poulin, J.-F., Amiot, J., & Bazinet, L. (2006a). Simultaneous separation of acid and basic bioactive peptides by electrodialysis with ultrafiltration membrane. Journal of Biotechnology, 123(3), 314–328. https://doi.org/10.1016/j.jbiotec.2005.11.016. Poulin, J.-F., Araya-Farias, M., Amiot, J., & Bazinet, L. (2006b). Separation of bioactive peptides by electrodialysis with ultrafiltration membrane. Desalination, 200(1–3), 620. https://doi.org/10.1016/J.DESAL.2006.03.485. Pouliot, Y. (2008). Membrane processes in dairy technology—From a simple idea to worldwide panacea. International Dairy Journal, 18(7), 735–740. https://doi.org/10.1016/j.idairyj.2008.03.005. Pruksasri, S., Nguyen, T.-H., Haltrich, D., & Novalin, S. (2015). Fractionation of a galacto-oligosaccharides solution at low and high temperature using nanofiltration. Separation and Purification Technology, 151, 124–130. https://doi.org/10.1016/j.seppur.2015.07.015. Rektor, A., & Vatai, G. (2004). Membrane filtration of mozzarella whey. Desalination, 162, 279–286. https://doi.org/10.1016/S0011-9164(04)00052-9. Rios, G. M., Rakotoarisoa, H., & Tarodo de la Fuente, B. (1988). Basic transport mechanisms of ultrafiltration in the presence of an electric field. Journal of Membrane Science, 38(2), 147–159. https://doi.org/10.1016/S0376-7388(00)80876-5. Rizki, Z., Janssen, A. E. M., Boom, R. M., & van der Padt, A. (2019). Oligosaccharides fractionation cascades with 3 outlet streams. Separation and Purification Technology, 221, 183–194. https://doi.org/10.1016/j.seppur.2019.03.086. Rizki, Z., Janssen, A. E. M., Claassen, G. D. H., Boom, R. M., & van der Padt, A. (2020b). Multi-criteria design of membrane cascades: Selection of configurations and process parameters. Separation and Purification Technology, 237, 116349. https://doi.org/10.1016/j.seppur.2019.116349. Rizki, Z., Suryawirawan, E., Janssen, A. E. M., van der Padt, A., & Boom, R. M. (2020a). Modelling temperature effects in a membrane cascade system for oligosaccharides. Journal of Membrane Science, 610, 118292. https://doi.org/10.1016/j.memsci.2020.118292. Robinson, C. W., Siegel, M. H., Condemine, A., Fee, C., Fahidy, T. Z., & Glick, B. R. (1993). Pulsed-electric-field crossflow ultrafiltration of bovine serum albumin. Journal of Membrane Science, 80(1), 209–220. https://doi.org/10.1016/0376-7388(93)85145-M. Robinson, S., Abdullah, S. Z., Bérubé, P., & Le-Clech, P. (2016). Ageing of membranes for water treatment: Linking changes to performance. Journal of Membrane Science, 503, 177–187. https://doi.org/10.1016/J.MEMSCI.2015.12.033. Roblet, C., Amiot, J., Lavigne, C., Marette, A., Lessard, M., Jean, J., Ramassamy, C., Moresoli, C., & Bazinet, L. (2012). Screening of in vitro bioactivities of a soy protein hydrolysate separated by hollow fiber and spiral-wound ultrafiltration membranes. Food Research International, 46(1), 237–249. https://doi.org/10.1016/j.foodres.2011.11.014. Roblet, C., Doyen, A., Amiot, J., & Bazinet, L. (2013). Impact of pH on ultrafiltration membrane selectivity during electrodialysis with ultrafiltration membrane (EDUF) purification of soy peptides from a complex matrix. Journal of Membrane Science, 435, 207–217. https://doi.org/10.1016/J.MEMSCI.2013.01.045. Rohani, M. M., & Zydney, A. L. (2010). Role of electrostatic interactions during protein ultrafiltration. Advances in Colloid and Interface Science, 160(1–2), 40–48 http://www.ncbi.nlm.nih.gov/pubmed/20688310. Accessed 20 March 2018. Rosenberg, E., Hepbildikler, S., Kuhne, W., & Winter, G. (2009). Ultrafiltration concentration of monoclonal antibody solutions: Development of an optimized method minimizing aggregation. Journal of Membrane Science, 342(1–2), 50–59. https://doi.org/10.1016/J.MEMSCI.2009.06.028. Rossignol, N., Vandanjon, L., Jaouen, P., & Quéméneur, F. (1999). Membrane technology for the continuous separation microalgae/culture medium: Compared performances of cross-flow microfiltration and ultrafiltration. Aquacultural Engineering, 20(3), 191–208. https://doi.org/10.1016/S0144-8609(99)00018-7. Sarapulova, V., Nevakshenova, E., Nebavskaya, X., Kozmai, A., Aleshkina, D., Pourcelly, G., Nikonenko, V., & Pismenskaya, N. (2018). Characterization of bulk and surface properties of anion-exchange membranes in initial stages of fouling by red wine. Journal of Membrane Science, 559, 170–182. https://doi.org/10.1016/j.memsci.2018.04.047. Shethji, J. K., & Ritchie, S. M. C. (2015). Microfiltration membranes functionalized with multiple styrenic homopolymer and block copolymer grafts. Journal of Applied Polymer Science, 132(36), 42501. https://doi.org/10.1002/app.42501. Shevate, R., Kumar, M., Karunakaran, M., Canlas, C., & Peinemann, K. V. (2018). Surprising transformation of a block copolymer into a high performance polystyrene ultrafiltration membrane with a hierarchically organized pore structure. Journal of Materials Chemistry A, 6(10), 4337–4345. https://doi.org/10.1039/c7ta09777h. Song, L. (1998). Flux decline in crossflow microfiltration and ultrafiltration: Mechanisms and modeling of membrane fouling. Journal of Membrane Science, 139(2), 183–200. https://doi.org/10.1016/S0376-7388(97)00263-9. Sun, H., Qi, D., Xu, J., Juan, S., & Zhe, C. (2011). Fractionation of polysaccharides from rapeseed by ultrafiltration: Effect of molecular pore size and operation conditions on the membrane performance. Separation and Purification Technology, 80(3), 670–676. https://doi.org/10.1016/J.SEPPUR.2011.06.038. Suwal, S., Doyen, A., & Bazinet, L. (2015). Characterization of protein, peptide and amino acid fouling on ion-exchange and filtration membranes: Review of current and recently developed methods. Journal of Membrane Science. Elsevier., 496, 267–283. https://doi.org/10.1016/j.memsci.2015.08.056. Suwal S, Li J, Engelberth AS, Huang J-Y (2018) Application of electro-membrane separation for recovery of acetic acid in lignocellulosic bioethanol production. Food and Bioproducts Processing 109:41–51 Suwal, S., Roblet, C., Amiot, J., Doyen, A., Beaulieu, L., Legault, J., & Bazinet, L. (2014). Recovery of valuable peptides from marine protein hydrolysate by electrodialysis with ultrafiltration membrane: Impact of ionic strength. Food Research International, 65, 407–415. https://doi.org/10.1016/J.FOODRES.2014.06.031. Suwarno, S. R., Huang, W., Chew, Y. M. J., Tan, S. H. H., Trisno, A. E., & Zhou, Y. (2018). On-line biofilm strength detection in cross-flow membrane filtration systems. Biofouling, 34(2), 123–131. https://doi.org/10.1080/08927014.2017.1409892. Tadimeti, J. G. D., Kurian, V., Chandra, A., & Chattopadhyay, S. (2016). Corrugated membrane surfaces for effective ion transport in electrodialysis. Journal of Membrane Science, 499, 418–428. https://doi.org/10.1016/J.MEMSCI.2015.11.001. Teng, M.-Y., Lin, S.-H., Wu, C.-Y., & Juang, R.-S. (2006). Factors affecting selective rejection of proteins within a binary mixture during cross-flow ultrafiltration. Journal of Membrane Science, 281(1–2), 103–110. https://doi.org/10.1016/J.MEMSCI.2006.03.019. Valiño, V., San Román, M. F., Ibañez, R., & Ortiz, I. (2014). Improved separation of bovine serum albumin and lactoferrin mixtures using charged ultrafiltration membranes. Separation and Purification Technology, 125, 163–169. https://doi.org/10.1016/J.SEPPUR.2014.01.023. Vrouwenvelder, J. S., Hinrichs, C., van der Meer, W. G. J., van Loosdrecht, M. C. M., & Kruithof, J. C. (2009). Pressure drop increase by biofilm accumulation in spiral wound RO and NF membrane systems: Role of substrate concentration, flow velocity, substrate load and flow direction. Biofouling, 25(6), 543–555. https://doi.org/10.1080/08927010902972225. Wang, F., He, M., Gao, K., Su, Y., Zhang, R., Liu, Y., Shen, J., Jiang, Z., & Kasher, R. (2019). Constructing membrane surface with synergistic passive antifouling and active antibacterial strategies through organic-inorganic composite modifier. Journal of Membrane Science, 576, 150–160. https://doi.org/10.1016/j.memsci.2019.01.047. Wang, M., Yuan, J., Huang, X., Cai, X., Li, L., & Shen, J. (2013). Grafting of carboxybetaine brush onto cellulose membranes via surface-initiated ARGET-ATRP for improving blood compatibility. Colloids and Surfaces B: Biointerfaces, 103, 52–58. https://doi.org/10.1016/J.COLSURFB.2012.10.025. Wijmans, J. G., Nakao, S., & Smolders, C. A. (1984). Flux limitation in ultrafiltration: Osmotic pressure model and gel layer model. Journal of Membrane Science, 20(2), 115–124. https://doi.org/10.1016/S0376-7388(00)81327-7. Xie, J.-H., Shen, M.-Y., Nie, S.-P., Zhao, Q., Li, C., & Xie, M.-Y. (2014). Separation of water-soluble polysaccharides from Cyclocarya paliurus by ultrafiltration process. Carbohydrate Polymers, 101, 479–483. https://doi.org/10.1016/J.CARBPOL.2013.09.075. Yazdanshenas, M., Tabatabaee-Nezhad, S. A. R., Soltanieh, M., Roostaazad, R., & Khoshfetrat, A. B. (2010). Contribution of fouling and gel polarization during ultrafiltration of raw apple juice at industrial scale. Desalination, 258(1–3), 194–200. https://doi.org/10.1016/j.desal.2010.03.014. Yogarathinam, L. T., Gangasalam, A., Ismail, A. F., Arumugam, S., & Narayanan, A. (2018). Concentration of whey protein from cheese whey effluent using ultrafiltration by combination of hydrophilic metal oxides and hydrophobic polymer. Journal of Chemical Technology and Biotechnology, 93(9), 2576–2591. https://doi.org/10.1002/jctb.5611. Zydney, A. L. (1997). Stagnant film model for concentration polarization in membrane systems. Journal of Membrane Science, 130(1–2), 275–281. https://doi.org/10.1016/S0376-7388(97)00006-9. Zydney, A. L. (2016). Continuous downstream processing for high value biological products: A review. Biotechnology and Bioengineering, 113(3), 465–475. https://doi.org/10.1002/bit.25695.