Review: Friction and Lubrication with High Water Content Crosslinked Hydrogels
Tóm tắt
As soft aqueous hydrogels have moved from new materials to the basis for real engineered devices in the last 20 years, their surface friction and lubrication are emerging as critical aspects of their function. The flexibility to alter and augment their mechanical and surface properties through control of the crosslinked 3D polymer networks has produced materials with diverse surface behaviors, even with the relatively simple composition of a single monomer and crosslink chemistry. Correspondingly with new understandings of the bulk behavior of hydrogels has been the identification of the mechanisms that govern the lubricity and frictional response under dynamic sliding conditions. Here we review these efforts, closely examining and identifying the internal and external influences that drive tribological response in high water content crosslinked hydrogels. The roles of surface structure, elasticity, contact response, charge, water interaction and water flow are addressed here as well as current synthesis and testing methods. We also collect open questions as well as the future needs to fully understand and exploit the surface properties of hydrogels for sliding performance.
Tài liệu tham khảo
Kirschner, C.M., Anseth, K.S.: Hydrogels in healthcare: from static to dynamic material microenvironments. Acta Mater. 61, 931–944 (2013). https://doi.org/10.1016/j.actamat.2012.10.037
Gong, J.P.: Friction and lubrication of hydrogels—its richness and complexity. Soft Matter 2, 544 (2006). https://doi.org/10.1039/b603209p
Analytics, C.: Web of Science Citation Report for topic words “Hydrogel lubrication.” (2020)
Sadd, M.H.: Elasticity: Theory, Applications, and Numerics. Elsevier, Amsterdam (2009)
Rosendahl, P.L., Drass, M., Felger, J., Schneider, J., Becker, W.: Equivalent strain failure criterion for multiaxially loaded incompressible hyperelastic elastomers. Int. J. Solids Struct. 166, 32–46 (2019). https://doi.org/10.1016/j.ijsolstr.2019.01.030
Naficy, S., Brown, H.R., Razal, J.M., Spinks, G.M., Whitten, P.G.: Progress toward robust polymer hydrogels. Aust. J. Chem. 64, 1007 (2011). https://doi.org/10.1071/CH11156
Huang, T., Xu, H., Jiao, K., Zhu, L., Brown, H.R., Wang, H.: A novel hydrogel with high mechanical strength: a macromolecular microsphere composite hydrogel. Adv. Mater. 19, 1622–1626 (2007). https://doi.org/10.1002/adma.200602533
Gong, J.P., Katsuyama, Y., Kurokawa, T., Osada, Y.: Double-network hydrogels with extremely high mechanical strength. Adv. Mater. 15, 1155–1158 (2003). https://doi.org/10.1002/adma.200304907
Nakayama, A., Kakugo, A., Gong, J.P., Osada, Y., Takai, M., Erata, T., Kawano, S.: High mechanical strength double-network hydrogel with bacterial cellulose. Adv. Funct. Mater. 14, 1124–1128 (2004). https://doi.org/10.1002/adfm.200305197
Yang, C., Yin, T., Suo, Z.: Polyacrylamide hydrogels. I. Network imperfection. J. Mech. Phys. Solids. 131, 43–55 (2019). https://doi.org/10.1016/j.jmps.2019.06.018
Mihai, L.A., Goriely, A.: How to characterize a nonlinear elastic material? A review on nonlinear constitutive parameters in isotropic finite elasticity. In: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. Royal Society Publishing (2017)
Kim, B., Lee, S.B., Lee, J., Cho, S., Park, H., Yeom, S., Park, S.H.: A comparison among Neo-Hookean model, Mooney-Rivlin model, and Ogden model for Chloroprene rubber. Int. J. Precis. Eng. Manuf. 13, 759–764 (2012). https://doi.org/10.1007/s12541-012-0099-y
Rivlin, R.S.: Large elastic deformations of isotropic materials VI. Further developments of the general theory. Philos. Trans. R. Soc. Lond. Ser. A 241, 379–397 (1948). https://doi.org/10.1098/rsta.1948.0024
Ogden, R.W.: Large deformation isotropic elasticity—on the correlation of theory and experiment for incompressible rubberlike solids. Proc. R. Soc. Lond. A. Math. Phys. Sci. 326, 565–584 (1972). https://doi.org/10.1098/rspa.1972.0026
Faghihi, S., Karimi, A., Jamadi, M., Imani, R., Salarian, R.: Graphene oxide/poly(acrylic acid)/gelatin nanocomposite hydrogel: experimental and numerical validation of hyperelastic model. Mater. Sci. Eng. C 38, 299–305 (2014). https://doi.org/10.1016/j.msec.2014.02.015
Sasson, A., Patchornik, S., Eliasy, R., Robinson, D., Haj-Ali, R.: Hyperelastic mechanical behavior of chitosan hydrogels for nucleus pulposus replacement-experimental testing and constitutive modeling. J. Mech. Behav. Biomed. Mater. 8, 143–153 (2012). https://doi.org/10.1016/j.jmbbm.2011.12.008
Van Der Sman, R.G.M.: Hyperelastic models for hydration of cellular tissue. Soft Matter 11, 7579–7591 (2015). https://doi.org/10.1039/c5sm01032b
Schulze, K.D., Hart, S.M., Marshall, S.L., O’Bryan, C.S., Urueña, J.M., Pitenis, A.A., Sawyer, W.G., Angelini, T.E.: Polymer osmotic pressure in hydrogel contact mechanics. Biotribology (2017). https://doi.org/10.1016/j.biotri.2017.03.004
Bhattacharyya, A., O’Bryan, C., Ni, Y., Morley, C.D., Taylor, C.R., Angelini, T.E.: Hydrogel compression and polymer osmotic pressure. Biotribology. 22, 100125 (2020). https://doi.org/10.1016/j.biotri.2020.100125
Marshall, S.L., Schulze, K.D., Hart, S.M., Urueña, J.M., McGhee, E.O., Bennett, A.I., Pitenis, A.A., O’Bryan, C.S., Angelini, T.E., Sawyer, W.G.: Spherically capped membrane probes for low contact pressure tribology. Biotribology. 11, 69–72 (2017). https://doi.org/10.1016/j.biotri.2017.03.008
Hu, Y., Zhao, X., Vlassak, J.J., Suo, Z.: Using indentation to characterize the poroelasticity of gels. Appl. Phys. Lett. 96, 121904 (2010). https://doi.org/10.1063/1.3370354
Stammen, J.A., Williams, S., Ku, D.N., Guldberg, R.E.: Mechanical properties of a novel PVA hydrogel in shear and unconfined compression. Biomaterials 22, 799–806 (2001). https://doi.org/10.1016/S0142-9612(00)00242-8
Li, J., Liu, H., Wang, C., Huang, G.: A facile method to fabricate hybrid hydrogels with mechanical toughness using a novel multifunctional cross-linker. RSC Adv. 7, 35311–35319 (2017). https://doi.org/10.1039/C7RA05645A
Bai, R., Yang, Q., Tang, J., Morelle, X.P., Vlassak, J., Suo, Z.: Fatigue fracture of tough hydrogels. Extrem. Mech. Lett. 15, 91–96 (2017). https://doi.org/10.1016/j.eml.2017.07.002
Rudy, A., Kuliasha, C., Uruena, J., Rex, J., Schulze, K.D., Stewart, D., Angelini, T., Sawyer, W.G., Perry, S.S.: Lubricous hydrogel surface coatings on polydimethylsiloxane (PDMS). Tribol Lett (2017). https://doi.org/10.1007/s11249-016-0783-7
Lin, P., Ma, S., Wang, X., Zhou, F.: Molecularly engineered dual-crosslinked hydrogel with ultrahigh mechanical strength, toughness, and good self-recovery. Adv. Mater. 27, 2054–2059 (2015). https://doi.org/10.1002/adma.201405022
Pitenis, A.A., Uruena, J.M., Nixon, R.M., Bhattacharjee, T., Krick, B.A., Dunn, A.C., Angelini, T.E., Sawyer, W.G.: Lubricity from polymer entangled networks on hydrogels. J. Tribol. 138, 042102 (2016)
Li, C., Rowland, M.J., Shao, Y., Cao, T., Chen, C., Jia, H., Zhou, X., Yang, Z., Scherman, O.A., Liu, D.: Responsive double network hydrogels of interpenetrating DNA and CB[8] host-guest supramolecular systems. Adv. Mater. 27, 3298–3304 (2015). https://doi.org/10.1002/adma.201501102
Chen, Q., Zhu, L., Zhao, C., Wang, Q., Zheng, J.: A robust, one-pot synthesis of highly mechanical and recoverable double network hydrogels using thermoreversible sol-gel polysaccharide. Adv. Mater. 25, 4171–4176 (2013). https://doi.org/10.1002/adma.201300817
Gong, Z., Zhang, G., Zeng, X., Li, J., Li, G., Huang, W., Sun, R., Wong, C.: High-strength, tough, fatigue resistant, and self-healing hydrogel based on dual physically cross-linked network. ACS Appl. Mater. Interfaces. 8, 24030–24037 (2016). https://doi.org/10.1021/acsami.6b05627
Gong, J.P.: Materials both tough and soft. Science 344, 161–162 (2014)
Gaharwar, A.K., Peppas, N.A., Khademhosseini, A.: Nanocomposite hydrogels for biomedical applications. Biotechnol. Bioeng. 111, 441–453 (2014). https://doi.org/10.1002/bit.25160
Liu, J., Chen, C., He, C., Zhao, J., Yang, X., Wang, H.: synthesis of graphene peroxide and its application in fabricating super extensible and highly resilient nanocomposite hydrogels. ACS Nano (2012). https://doi.org/10.1021/nn302874v
Pasqui, D., Atrei, A., Giani, G., De Cagna, M., Barbucci, R.: Metal oxide nanoparticles as cross-linkers in polymeric hybrid hydrogels. Mater. Lett. 65, 392–395 (2011). https://doi.org/10.1016/j.matlet.2010.10.053
Peppas, N.A., Hilt, J.Z., Khademhosseini, A., Langer, R.: Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv. Mater. 18, 1345 (2006)
Sawyer, W.G., Freudenberg, K.D., Bhimaraj, P., Schadler, L.S.: A study on the friction and wear behavior of PTFE filled with alumina nanoparticles. Wear 254, 573–580 (2003). https://doi.org/10.1016/S0043-1648(03)00252-7
Gong, J., Osada, Y.: Gel friction: a model based on surface repulsion and adsorption. J. Chem. Phys. 109, 8062–8068 (1998). https://doi.org/10.1063/1.477453
Shoaib, T., Heintz, J., Lopez-Berganza, J.A., Muro-Barrios, R., Egner, S.A., Espinosa-Marzal, R.M.: Stick-slip friction reveals hydrogel lubrication mechanisms. Langmuir 34, 756–765 (2018). https://doi.org/10.1021/acs.langmuir.7b02834
McGhee, E.O., Pitenis, A.A., Urueña, J.M., Schulze, K.D., McGhee, A.J., O’Bryan, C.S., Bhattacharjee, T., Angelini, T.E., Sawyer, W.G.: In situ measurements of contact dynamics in speed-dependent hydrogel friction. Biotribology. 13, 23–29 (2018). https://doi.org/10.1016/j.biotri.2017.12.002
Reale, E.R., Dunn, A.C.: Poroelasticity-driven lubrication in hydrogel interfaces. Soft Matter 13, 428–435 (2017). https://doi.org/10.1039/c6sm02111e
Delavoipière, J., Tran, Y., Verneuil, E., Heurtefeu, B., Hui, C.Y., Chateauminois, A.: Friction of poroelastic contacts with thin hydrogel films. Langmuir 34, 9617–9626 (2018). https://doi.org/10.1021/acs.langmuir.8b01466
Cuccia, N.L., Pothineni, S., Wu, B., Méndez Harper, J., Burton, J.C.: Pore-size dependence and slow relaxation of hydrogel friction on smooth surfaces. Proc. Natl. Acad. Sci. 117, 11247–11256 (2020). https://doi.org/10.1073/pnas.1922364117
Dunn, A.C., Sawyer, W.G., Angelini, T.E.: Gemini interfaces in aqueous lubrication with hydrogels. Tribol. Lett. 54, 59–66 (2014). https://doi.org/10.1007/s11249-014-0308-1
Gong, J.P., Kagata, G., Osada, Y.: Friction of gels 4 friction on charged gels. J. Phys. Chem. B. 103, 6007–6014 (1999). https://doi.org/10.1021/jp990256v
Pitenis, A.A., Urueña, J.M., Schulze, K.D., Nixon, R.M., Dunn, A.C., Krick, B.A., Sawyer, W.G., Angelini, T.E.: Polymer fluctuation lubrication in hydrogel gemini interfaces. Soft Matter 10, 8955–8962 (2014). https://doi.org/10.1039/c4sm01728e
Urueña, J.M., Pitenis, A.A., Nixon, R.M., Schulze, K.D., Angelini, T.E., Gregory Sawyer, W.: Mesh size control of polymer fluctuation lubrication in gemini hydrogels. Biotribology. 1–2, 24–29 (2015). https://doi.org/10.1016/j.biotri.2015.03.001
Shoaib, T., Espinosa-Marzal, R.M.: Insight into the viscous and adhesive contributions to hydrogel friction. Tribol. Lett. 66, 1–14 (2018). https://doi.org/10.1007/s11249-018-1045-7
Pitenis, A.A., Sawyer, W.G.: Lubricity of high water content aqueous gels. Tribol. Lett. 66, 1–7 (2018). https://doi.org/10.1007/s11249-018-1063-5
Gaisinskaya, A., Ma, L., Silbert, G., Sorkin, R., Tairy, O., Goldberg, R., Kampf, N., Klein, J.: Hydration lubrication: exploring a new paradigm. Faraday Discuss. 156, 217 (2012). https://doi.org/10.1039/c2fd00127f
Ma, L., Gaisinskaya-kipnis, A., Kampf, N., Klein, J.: Origins of hydration lubrication. Nat. Commun. 6, 1–6 (2015). https://doi.org/10.1038/ncomms7060
Zhang, J., Peppas, N.A.: Synthesis and characterization of pH- and temperature-sensitive poly(methacrylic acid)/poly(N-isopropylacrylamide) interpenetrating polymeric networks. Macromolecules 33, 102–107 (2000). https://doi.org/10.1021/ma991398q
Tambe, N.S., Bhushan, B.: Scale dependence of micro/nano-friction and adhesion of MEMS/NEMS materials, coatings and lubricants. Nanotechnology. 15, 1561–1570 (2004). https://doi.org/10.1088/0957-4484/15/11/033
Li, H., Choi, Y.S., Rutland, M.W., Atkin, R.: Nanotribology of hydrogels with similar stiffness but different polymer and crosslinker concentrations. J. Colloid Interface Sci. 563, 347–353 (2020). https://doi.org/10.1016/j.jcis.2019.12.045
You, S., Li, J., Zhu, W., Yu, C., Mei, D., Chen, S.: Nanoscale 3D printing of hydrogels for cellular tissue engineering. J. Mater. Chem. B. 6, 2187–2197 (2018). https://doi.org/10.1039/c8tb00301g
Liamas, E., Connell, S.D., Ramakrishna, S.N., Sarkar, A.: Probing the frictional properties of soft materials at the nanoscale. Nanoscale 12, 2292–2308 (2020)
Mulakaluri, N., Persson, B.N.J.: Adhesion between elastic solids with randomly rough surfaces: Comparison of analytical theory with molecular-dynamics simulations. EPL. (2011). https://doi.org/10.1209/0295-5075/96/66003
Pendyala, P., Kim, H.N., Grewal, H.S., Cho, I.J., Yoon, E.S.: Effect of capillary forces on the correlation between nanoscale adhesion and friction of polymer patterned surfaces. Tribol. Int. 114, 436–444 (2017). https://doi.org/10.1016/j.triboint.2017.04.045
Ciavarella, M., Joe, J., Papangelo, A., Barber, J.R.: The role of adhesion in contact mechanics. J. R. Soc. Interface. (2019). https://doi.org/10.1098/rsif.2018.0738
Kajiyama, T., Tanaka, K., Takahara, A.: Analysis of surface mobility in polystyrene films with monodisperse and bimodal molecular weights by lateral force microscopy. Polym. Sci. 42, 639–647 (2003)
Fu, J., Li, B., Han, Y.: Molecular motions of different scales at thin polystyrene film surface by lateral force microscopy. J. Chem. Phys. (2005). https://doi.org/10.1063/1.1961228
Tambe, N.S., Bhushan, B.: Micro/nanotribological characterization of PDMS and PMMA used for BioMEMS/NEMS applications. Ultramicroscopy (2005). https://doi.org/10.1016/J.ULTRAMIC.2005.06.050
Bogdanovic, G., Tiberg, F., Rutland, M.W.: Sliding friction between cellulose and silica surfaces. Langmuir 17, 5911–5916 (2001). https://doi.org/10.1021/la010330c
Ramakrishna, S.N., Cirelli, M., Divandari, M., Benetti, E.M.: Effects of lateral deformation by thermoresponsive polymer brushes on the measured friction forces. Langmuir 33, 4164–4171 (2017). https://doi.org/10.1021/acs.langmuir.7b00217
Nordgren, N., Rutland, M.W.: Tunable nanolubrication between dual-responsive polyionic grafts. Nano Lett. 9, 2984–2990 (2009). https://doi.org/10.1021/nl901411e
Dehghani, E.S., Ramakrishna, S.N., Spencer, N.D., Benetti, E.M.: Controlled crosslinking is a tool to precisely modulate the nanomechanical and nanotribological properties of polymer brushes. Macromolecules 50, 2932–2941 (2017). https://doi.org/10.1021/acs.macromol.6b02409
Solares, S.D.: Nanoscale effects in the characterization of viscoelastic materials with atomic force microscopy: coupling of a quasi-three-dimensional standard linear solid model with in-plane surface interactions. Beilstein J. Nanotechnol. 7, 554–571 (2016). https://doi.org/10.3762/bjnano.7.49
Li, K., Pandiyarajan, C.K., Prucker, O., Rühe, J.: On the lubrication mechanism of surfaces covered with surface-attached hydrogels. Macromol. Chem. Phys. 217, 526–536 (2016). https://doi.org/10.1002/macp.201500243
Kurokawa, T., Tominaga, T., Katsuyama, Y., Kuwabara, R., Furukawa, H., Osada, Y., Gong, J.P.: Elastic-hydrodynamic transition of gel friction. Langmuir 21, 8643–8648 (2005). https://doi.org/10.1021/la050635h
Kim, J., Dunn, A.C.: Soft hydrated sliding interfaces as complex fluids. Soft Matter 12, 6536–6546 (2016). https://doi.org/10.1039/C6SM00623J
Kagata, G., Gong, P., Osada, Y.: Friction of gels. 6. Effects of sliding velocity and viscoelastic responses of the network. J. Phys. Chem. B. 106, 4596–4601 (2002). https://doi.org/10.1021/jp012380w
Kim, J., Dunn, A.C.: Thixotropic mechanics in soft hydrated sliding interfaces. Tribol. Lett. (2018). https://doi.org/10.1007/s11249-018-1056-4
Chan, E.P., Hu, Y., Johnson, P.M., Suo, Z., Stafford, C.M.: Spherical indentation testing of poroelastic relaxations in thin hydrogel layers. Soft Matter 8, 1492 (2012). https://doi.org/10.1039/c1sm06514a
McGhee, E.O., Urueña, J.M., Pitenis, A.A., Sawyer, W.G.: Temperature-dependent friction of gemini hydrogels. Tribol. Lett. 67, 1–7 (2019). https://doi.org/10.1007/s11249-019-1229-9
Murakami, T., Yarimitsu, S., Nakashima, K., Sakai, N., Yamaguchi, T., Sawae, Y., Suzuki, A.: Biphasic and boundary lubrication mechanisms in artificial hydrogel cartilage: a review. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 229, 864–878 (2015). https://doi.org/10.1177/0954411915611160
Murakami, T., Sakai, N., Yamaguchi, T., Yarimitsu, S., Nakashima, K., Sawae, Y., Suzuki, A.: Evaluation of a superior lubrication mechanism with biphasic hydrogels for artificial cartilage. Tribol. Int. 89, 19–26 (2015). https://doi.org/10.1016/j.triboint.2014.12.013
Hu, Y., Suo, Z.: Viscoelasticity and poroelasticity in elastomeric gels. Acta Mech. Solida Sin. 25, 441–458 (2012). https://doi.org/10.1016/S0894-9166(12)60039-1
Blum, M.M., Ovaert, T.C.: Experimental and numerical tribological studies of a boundary lubricant functionalized poro-viscoelastic PVA hydrogel in normal contact and sliding. J. Mech. Behav. Biomed. Mater. 14, 248–258 (2012). https://doi.org/10.1016/j.jmbbm.2012.06.009
Oyen, M.L.: Mechanical characterisation of hydrogel materials. Int. Mater. Rev. 59, 44–59 (2014). https://doi.org/10.1179/1743280413Y.0000000022
Dunn, A.C., Urueña, J.M., Huo, Y., Perry, S.S., Angelini, T.E., Sawyer, W.G.: Lubricity of surface hydrogel layers. Tribol. Lett. 49, 371–378 (2013). https://doi.org/10.1007/s11249-012-0076-8
Simmons, C.S., Ribeiro, A.J.S., Pruitt, B.L.: Formation of composite polyacrylamide and silicone substrates for independent control of stiffness and strain. Lab Chip 13, 646–649 (2013). https://doi.org/10.1039/c2lc41110e
Yu, Y., Yuk, H., Parada, G.A., Wu, Y., Liu, X., Nabzdyk, C.S., Youcef-Toumi, K., Zang, J., Zhao, X.: Multifunctional “hydrogel skins” on diverse polymers with arbitrary shapes. Adv. Mater. (2019). https://doi.org/10.1002/adma.201807101
Yeung, T., Georges, P.C., Flanagan, L.A., Marg, B., Ortiz, M., Funaki, M., Zahir, N., Ming, W., Weaver, V., Janmey, P.A.: Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil. Cytoskeleton. 60, 24–34 (2005). https://doi.org/10.1002/cm.20041
Denisin, A.K., Pruitt, B.L.: Tuning the range of polyacrylamide gel stiffness for mechanobiology applications. ACS Appl. Mater. Interfaces. 8, 21893–21902 (2016). https://doi.org/10.1021/acsami.5b09344
Sudre, G., Hourdet, D., Cousin, F., Creton, C., Tran, Y.: Structure of surfaces and interfaces of poly(N, N-dimethylacrylamide) hydrogels. Langmuir 28, 12282–12287 (2012). https://doi.org/10.1021/la301417x
Meier, Y.A., Zhang, K., Spencer, N.D., Simič, R.: Linking friction and surface properties of hydrogels molded against materials of different surface energies. Langmuir 35, 15805–15812 (2019). https://doi.org/10.1021/acs.langmuir.9b01636
Gombert, Y., Simič, R., Roncoroni, F., Dübner, M., Geue, T., Spencer, N.D.: Structuring hydrogel surfaces for tribology. Adv. Mater. Interfaces. (2019). https://doi.org/10.1002/admi.201901320
Bonyadi, S.Z., Atten, M., Dunn, A.C.: Self-regenerating compliance and lubrication of polyacrylamide hydrogels. Soft Matter 15, 8728–8740 (2019). https://doi.org/10.1039/c9sm01607d
Persson, B.N.J., Scaraggi, M.: Some Comments on Hydrogel and Cartilage Contact Mechanics and Friction. Tribol. Lett. 66, 1–6 (2018). https://doi.org/10.1007/s11249-017-0973-y
Kamada, K., Furukawa, H., Kurokawa, T., Tada, T., Tominaga, T., Nakano, Y., Gong, J.P.: Surfactant-induced friction reduction for hydrogels in the boundary lubrication regime. J. Phys. Condens. Matter. (2011). https://doi.org/10.1088/0953-8984/23/28/284107
Wang, Z., Li, J., Liu, Y., Luo, J.: Macroscale superlubricity achieved between zwitterionic copolymer hydrogel and sapphire in water. Mater. Des. 188, 108441 (2020). https://doi.org/10.1016/j.matdes.2019.108441
Chaudhury, M.K., Whitesides, G.M.: Direct measurement of interfacial interactions between semispherical lenses and flat sheets of poly(dimethylsiloxane) and their chemical derivatives. Langmuir 7, 1013–1025 (1991). https://doi.org/10.1021/la00053a033
Shull, K.R.: Contact mechanics and the adhesion of soft solids, (2002)
Lorenz, B., Krick, B.A., Mulakaluri, N., Smolyakova, M., Dieluweit, S., Sawyer, W.G., Persson, B.N.J.: Adhesion: role of bulk viscoelasticity and surface roughness. J. Phys. Condens. Matter 25, 225004 (2013). https://doi.org/10.1088/0953-8984/25/22/225004
Greenwood, J.A., Johnson, K.L.: Oscillatory loading of a viscoelastic adhesive contact. J. Colloid Interface Sci. 296, 284–291 (2006). https://doi.org/10.1016/j.jcis.2005.08.069
Shull, K.R., Ahn, D., Chen, W., Flanigan, C.M., Crosby, A.J.: Axisymmetric adhesion tests of soft materials. Macromol. Chem. Phys. 199, 489–511 (1998). https://doi.org/10.1002/(SICI)1521-3935(19980401)199:4%3c489:AID-MACP489%3e3.0.CO;2-A
Aulin, C., Shchukarev, A., Lindqvist, J., Malmström, E., Wågberg, L., Lindström, T.: Wetting kinetics of oil mixtures on fluorinated model cellulose surfaces. J. Colloid Interface Sci. 317, 556–567 (2008). https://doi.org/10.1016/j.jcis.2007.09.096
Wahl, K.J., Asif, S.A.S., Greenwood, J.A., Johnson, K.L.: Oscillating adhesive contacts between micron-scale tips and compliant polymers. J. Colloid Interface Sci. 296, 178–188 (2006). https://doi.org/10.1016/j.jcis.2005.08.028
Bhushan, B., Israelachvili, J.N., Landman, U.: Nanotribology: Friction, wear and lubrication at the atomic scale. Nature (1995). https://doi.org/10.1038/374607a0
Roba, M., Duncan, E.G., Hill, G.A., Spencer, N.D., Tosatti, S.G.P.: Friction measurements on contact lenses in their operating environment. Tribol. Lett. 44, 387–397 (2011). https://doi.org/10.1007/s11249-011-9856-9
Sterner, O., Aeschlimann, R., Zürcher, S., Scales, C., Riederer, D., Spencer, N.D., Tosatti, S.G.P.: Tribological classification of contact lenses: from coefficient of friction to sliding work. Tribol. Lett. 63, 1–13 (2016). https://doi.org/10.1007/s11249-016-0696-5
McDonald, J.C., Whitesides, G.M.: Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc. Chem. Res. 35, 491–499 (2002). https://doi.org/10.1021/ar010110q
Abate, A.R., Lee, D., Do, T., Holtze, C., Weitz, D.A.: Glass coating for PDMS microfluidic channels by sol-gel methods. Lab Chip 8, 516–518 (2008). https://doi.org/10.1039/b800001h
Rim, Y.S., Bae, S.-H., Chen, H., De Marco, N., Yang, Y.: Recent progress in materials and devices toward printable and flexible sensors. Adv. Mater. 28, 4415–4440 (2016). https://doi.org/10.1002/adma.201505118
Crosby, A.J., Hageman, M., Duncan, A.: Controlling polymer adhesion with “pancakes”. Langmuir 21, 11738–11743 (2005). https://doi.org/10.1021/la051721k
Shepherd, R.F., Stokes, A.A., Nunes, R.M.D., Whitesides, G.M.: Soft machines that are resistant to puncture and that self seal. Adv. Mater. 25, 6709–6713 (2013). https://doi.org/10.1002/adma.201303175
Nalam, P.C., Gosvami, N.N., Caporizzo, M.A., Composto, R.J., Carpick, R.W.: Nano-rheology of hydrogels using direct drive force modulation atomic force microscopy. Soft Matter 11, 8165–8178 (2015). https://doi.org/10.1039/c5sm01143d
Nalam, P.C., Lee, H.S., Bhatt, N., Carpick, R.W., Eckmann, D.M., Composto, R.J.: Nanomechanics of pH-responsive, drug-loaded, bilayered polymer grafts. ACS Appl. Mater. Interfaces. 9, 12936–12948 (2017). https://doi.org/10.1021/acsami.6b14116
Li, A., Benetti, E.M., Tranchida, D., Clasohm, J.N., Schönherr, H., Spencer, N.D.: Surface-grafted, covalently cross-linked hydrogel brushes with tunable interfacial and bulk properties. Macromolecules 44, 5344–5351 (2011). https://doi.org/10.1021/ma2006443
Bhamla, M.S., Chai, C., Rabiah, N.I., Frostad, J.M., Fuller, G.G.: Instability and breakup of model tear films. Investig. Ophthalmol. Vis. Sci. 57, 949–958 (2016). https://doi.org/10.1167/iovs.15-18064
Bhamla, M.S., Balemans, C., Fuller, G.G.: Dewetting and deposition of thin films with insoluble surfactants from curved silicone hydrogel substrates. J. Colloid Interface Sci. 449, 428–435 (2015). https://doi.org/10.1016/j.jcis.2015.01.002
Kandow, C.E., Georges, P.C., Janmey, P.A., Beningo, K.A.: Polyacrylamide hydrogels for cell mechanics: steps toward optimization and alternative uses. Metods Cell Biol 83, 29–46 (2007)
Wen, Q., Basu, A., Janmey, P.A., Yodh, A.G.: Non-affine deformations in polymer hydrogels. Soft Matter 8, 8039–8049 (2012)
Yamamoto, T., Kurokawa, T., Ahmed, J., Kamita, G., Yashima, S., Furukawa, Y., Ota, Y., Furukawa, H., Gong, J.P.: In situ observation of a hydrogel-glass interface during sliding friction. Soft Matter 10, 5589–5596 (2014). https://doi.org/10.1039/c4sm00338a
Schulze, K.D., Bennett, A.I., Marshall, S.L., Rowe, K.G., Dunn, A.C.: Real area of contact in a soft transparent interface by particle exclusion microscopy. ASME J. Tribol. 138, 041404 (2016)
Pham, J.T., Schellenberger, F., Kappl, M., Butt, H.J.: From elasticity to capillarity in soft materials indentation. Phys. Rev. Mater. 1, 015602 (2017). https://doi.org/10.1103/PhysRevMaterials.1.015602
Graham, B.T., Moore, A.C., Burris, D.L., Price, C.: Sliding enhances fluid and solute transport into buried articular cartilage contacts. Osteoarthr. Cartil. 25, 2100–2107 (2017). https://doi.org/10.1016/j.joca.2017.08.014
McGhee, E.O., Pitenis, A.A., Urueña, J.M., Schulze, K.D., McGhee, A.J., O’Bryan, C.S., Bhattacharjee, T., Angelini, T.E., Sawyer, W.G.: In situ measurements of contact dynamics in speed-dependent hydrogel friction. Biotribology. 13, 23–29 (2017). https://doi.org/10.1016/j.biotri.2017.12.002
Lee, D., Rahman, M.M., Zhou, Y., Ryu, S.: Three-dimensional confocal microscopy indentation method for hydrogel elasticity measurement. Langmuir 31, 9684–9693 (2015). https://doi.org/10.1021/acs.langmuir.5b01267
Bonyadi, S.Z., Atten, M., Dunn, A.C.: Self-regenerating compliance and lubrication of polyacrylamide hydrogels. Soft Matter (2019). https://doi.org/10.1039/c9sm01607d
Urueña, J.M., Hart, S.M., Hood, D.L., McGhee, E.O., Niemi, S.R., Schulze, K.D., Levings, P.P., Sawyer, W.G., Pitenis, A.A.: Considerations for biotribometers: cells, gels, and tissues. Tribol. Lett. 66, 1–7 (2018). https://doi.org/10.1007/s11249-018-1094-y
Pitenis, A.A., Urueña, J.M., McGhee, E.O., Hart, S.M., Reale, E.R., Kim, J., Schulze, K.D., Marshall, S.L., Bennett, A.I., Niemi, S.R., Angelini, T.E., Sawyer, W.G., Dunn, A.C.: Challenges and opportunities in soft tribology. Tribol. Mater. Surfaces Interfaces. 11, 180–186 (2017). https://doi.org/10.1080/17515831.2017.1400779
Pitenis, A.A., Urueña, J.M., Hart, S.M., O’Bryan, C.S., Marshall, S.L., Levings, P.P., Angelini, T.E., Sawyer, W.G.: Friction-induced inflammation. Tribol. Lett. 66, 1–13 (2018). https://doi.org/10.1007/s11249-018-1029-7
Hart, S.M., Degen, G.D., Urueña, J.M., Levings, P.P., Sawyer, W.G., Pitenis, A.A.: Friction-induced apoptosis. Tribol. Lett. 67, 1–12 (2019). https://doi.org/10.1007/s11249-019-1197-0
McGhee, E.O., Hart, S.M., Urueña, J.M., Sawyer, W.G.: Hydration control of gel-adhesion and muco-adhesion. Langmuir 35, 15769–15775 (2019). https://doi.org/10.1021/acs.langmuir.9b02816
Bonyadi, S.Z., Dunn, A.C.: Brittle or ductile? Abrasive wear of polyacrylamide hydrogels reveals load-dependent wear mechanisms. Tribol. Lett. 68, 1–14 (2020). https://doi.org/10.1007/s11249-019-1259-3
Morrison, S., Sullivan, D.A., Sullivan, B.D., Sheardown, H., Schmidt, T.A.: Dose-dependent and synergistic effects of proteoglycan 4 on boundary lubrication at a human cornea-polydimethylsiloxane. Biointerface Eye Contact Lens Sci. Clin. Pract. 38, 27–35 (2012). https://doi.org/10.1097/ICL.0b013e31823f7041
Korogiannaki, M., Samsom, M., Schmidt, T.A., Sheardown, H.: Surface-functionalized model contact lenses with a bioinspired proteoglycan 4 (PRG4)-grafted layer. ACS Appl. Mater. Interface 10, 30125–30136 (2018). https://doi.org/10.1021/acsami.8b09755
Urueña, J.M., Pitenis, A.A., Nixon, R.M., Schulze, K.D., Angelini, T.E., Gregory Sawyer, W.: Mesh size control of polymer fluctuation lubrication in gemini hydrogels. Biotribology. 1–2, 24–29 (2014). https://doi.org/10.1016/j.biotri.2015.03.001
Zhang, J., Daubert, C.R., Foegeding, E.A.: Characterization of polyacrylamide gels as an elastic model for food gels. Rheol. Acta 44, 622–630 (2005). https://doi.org/10.1007/s00397-005-0444-5
Tanaka, Y., Kuwabara, R., Na, Y.H., Kurokawa, T., Gong, J.P., Osada, Y.: Determination of fracture energy of high strength double network hydrogels. J. Phys. Chem. B. 109, 11559–11562 (2005). https://doi.org/10.1021/jp0500790
Kundu, S., Crosby, A.J.: Cavitation and fracture behavior of polyacrylamide hydrogels. Soft Matter 5, 3963–3968 (2009). https://doi.org/10.1039/b909237d