Review Article: Advances in modeling of bed particle entrainment sheared by turbulent flow
Tóm tắt
Bed particle entrainment by turbulent wall-shear flow is a key topic of interest in hydrodynamics because it plays a major role to govern the planetary morphodynamics. In this paper, the state-of-the-art review of the essential mechanisms governing the bed particle entrainment by turbulent wall-shear flow and their mathematical modeling is presented. The paper starts with the appraisal of the earlier multifaceted ideas in modeling the particle entrainment highlighting the rolling, sliding, and lifting modes of entrainment. Then, various modeling approaches of bed particle entrainment, such as deterministic, stochastic, and spatiotemporal approaches, are critically analyzed. The modeling criteria of particle entrainment are distinguished for hydraulically smooth, transitional, and rough flow regimes. In this context, the responses of particle size, particle exposure, and packing condition to the near-bed turbulent flow that shears the particles to entrain are discussed. From the modern experimental outcomes, the conceptual mechanism of particle entrainment from the viewpoint of near-bed turbulent coherent structures is delineated. As the latest advancement of the subject, the paper sheds light on the origin of the primitive empirical formulations of bed particle entrainment deriving the scaling laws of threshold flow velocity of bed particle motion from the perspective of the phenomenological theory of turbulence. Besides, a model framework that provides a new look on the bed particle entrainment phenomenon stemming from the stochastic-cum-spatiotemporal approach is introduced. Finally, the future scope of research is articulated with open questions.
Từ khóa
Tài liệu tham khảo
1977, Initial movement of grains on a stream bed: The effect of relative protrusion, Proc. R. Soc. A, 352, 523, 10.1098/rspa.1977.0014
1990, The variability of critical shear stress, friction angle, and grain protrusion in water-worked sediments, Sedimentology, 37, 647, 10.1111/j.1365-3091.1990.tb00627.x
2001, Surface roughness effects in near-bed turbulence: Implications to sediment entrainment, J. Eng. Mech., 127, 211, 10.1061/(asce)0733-9399(2001)127:3(211)
2002, Stochastic incipient motion criterion for spheres under various bed packing conditions, J. Hydraul. Eng., 128, 369, 10.1061/(asce)0733-9429(2002)128:4(369)
2009, Entrainment threshold of cohesionless sediment grains under steady flow of air and water, Sedimentology, 56, 493, 10.1111/j.1365-3091.2008.00981.x
1967, Proposed mechanism for sediment entrainment by turbulent flows, J. Geophys. Res., 72, 6183, 10.1029/jz072i024p06183
1996, Experiments on particle-turbulence interactions in the near-wall region of an open channel flow: Implications for sediment transport, J. Fluid Mech., 326, 285, 10.1017/s0022112096008324
2011, Near-bed turbulence characteristics at the entrainment threshold of sediment beds, J. Hydraul. Eng., 137, 945, 10.1061/(asce)hy.1943-7900.0000396
1936, Application of similarity principles and turbulence research to bed-load movement, Mitteilungen der Preussischen Versuchsanstalt für Wasserbau und Schiffbau, 5
1977, Threshold of sediment motion under unidirectional currents, Sedimentology, 24, 507, 10.1111/j.1365-3091.1977.tb00136.x
1997, A systematic analysis of eight decades of incipient motion studies, with special reference to gravel-bedded rivers, Water Resour. Res., 33, 1993, 10.1029/96wr03190
2008, Sediment threshold under stream flow: A state-of-the-art review, KSCE J. Civ. Eng., 12, 45, 10.1007/s12205-008-8045-3
2014, Fluvial Hydrodynamics: Hydrodynamic and Sediment Transport Phenomena
1914, The transportation of debris by running water
1937, The force required to move particles on a stream bed, Shorter Contributions to General Geology, 121
1973, Incipient motion and sediment transport, J. Hydraul. Div. ASCE, 99, 1679, 10.1061/JYCEAJ.0003766
1929, On the transport of sediments by streams, Math. Proc. Cambridge Philos. Soc., 25, 272, 10.1017/s0305004100013979
1936, Über Geschiebebewegung. Wasserwirtschaft und Technik, 28
1950, The bed-load function for sediment transportation in open channel flows, Technical Bulletin, 1026
1963, An expression for bed-load transportation, J. Hydraul. Div. ASCE, 89, 221, 10.1061/JYCEAJ.0000874
1966, Der geschiebetrieb bei mischungen untersucht an natürlichen abpflästerungserscheinungen in kanälen
1939, The relation of suspended to bed materials in river, Trans., Am. Geophys. Union, 20, 637, 10.1029/tr020i004p00637
Task Committee, 1966, Sediment transportation mechanics: Initiation of motion, J. Hydraul. Div. ASCE, 92, 291, 10.1061/JYCEAJ.0001416
1973, Incipient motion of pebbles on the bed of small streams, 157
R. Emmerling, “The instantaneous structure of the wall pressure under a turbulent boundary layer flow,” Bericht 9, Max-Planck Institut für Strömungsforschung, 1973.
1977, Investigation of pressure fluctuations beneath a turbulent boundary layer by means of optical method, Phys. Fluids, 20, S216, 10.1063/1.861733
2006, Sediment Transport: A Geophysical Phenomenon
1961, The use of spheres to measure lift and drag on wind-eroded soil grains, Soil Sci. Soc. Am. J., 25, 343, 10.2136/sssaj1961.03615995002500050011x
1983, The hydrodynamics of particle clusters and sediment entrainment in coarse alluvial channels, Sedimentology, 30, 137, 10.1111/j.1365-3091.1983.tb00656.x
1973, Fluid forces acting on a sphere near a solid boundary, 217
1974, Fluid forces on a body in shear flow; experimental use of stationary flow, Proc. R. Soc. A, 340, 147, 10.1098/rspa.1974.0145
L. W. Apperley, “Effect of turbulence on sediment entrainment,” Ph.D. thesis, University of Auckland, Auckland, 1968.
1971, Hydrodynamic effects of seepage on bed particles, J. Hydraul. Div. ASCE, 97, 421, 10.1061/JYCEAJ.0002909
1978, Fluid dynamic lift on a bed particle, J. Hydraul. Div. ASCE, 104, 1171, 10.1061/JYCEAJ.0005047
1940, The equilibrium of grains on the bed of a stream, Proc. R. Soc. A, 174, 322, 10.1098/rspa.1940.0023
M. Kurihara, “On the critical tractive force,” Report Number 3, Research Institute for Hydraulic Engineering, Kyushu University, Japan, 1948, Vol. 4.
1956, Fundamental study on critical tractive force, Trans. Japan Soc. Civ. Eng., 1956, 1, 10.2208/jscej1949.1956.41_1
1965, Calculation of non-uniform sediment concentrations, J. Hydraul. Div. ASCE, 91, 225, 10.1061/JYCEAJ.0001277
1971, Some studies on the mechanics of bed load transport, Proc. Japan Soc. Civ. Eng., 1971, 61, 10.2208/jscej1969.1971.61
1982, Incipient motion of sand particles on side slopes, J. Hydraul. Div. ASCE, 108, 95, 10.1061/JYCEAJ.0005812
1987, Calculations of the critical shear stress for motion of uniform and heterogeneous sediments, Water Resour. Res., 23, 1471, 10.1029/wr023i008p01471
1951, Vollständige darstellung der turbulenten geschwindigkeitsverteilung in glatten leitungen, Z. Angew. Math. Mech., 31, 208, 10.1002/zamm.19510310704
1979, Boundary Layer Theory
1966, The angle of repose for a single grain on a fixed rough bed, Sedimentology, 6, 303, 10.1111/j.1365-3091.1966.tb01897.x
1995, Criteria for incipient motion of spherical sediment particles, J. Hydraul. Eng., 121, 472, 10.1061/(asce)0733-9429(1995)121:6(472)
1967, A theoretical and experimental study of drag and lift forces acting on a sphere resting on a hypothetical stream bed, 185
1965, The lift on a small sphere in a slow shear flow, J. Fluid Mech., 22, 385, 10.1017/s0022112065000824
1968, Corrigendum, the lift on a small sphere in a slow shear flow, J. Fluid Mech., 31, 624, 10.1017/s0022112068999990
1961, The transverse force on a spinning sphere moving in a viscous fluid, J. Fluid Mech., 11, 447, 10.1017/s0022112061000640
1933, Über die grundlegenden berechnungen bei der schwerkraftaufbereitung, Z. Ver. Dtsch. Ing., 77, 318
1972, An investigation of particle trajectories in two-phase flow systems, J. Fluid Mech., 55, 193, 10.1017/s0022112072001806
2003, On the influence of turbulence on the initiation of sediment motion, Int. J. Sediment Res., 18, 17
2007, Predicting incipient motion, including the effect of turbulent pressure fluctuations in the bed, Water Resour. Res., 43, W05410, 10.1029/2006wr004919
I. Nezu, “Turbulent structure in open channel flow,” Ph.D. thesis, Kyoto University, Kyoto, Japan, 1977.
1950, Das in wandnähe gültige geschwindigkeitsgesetz turbulenter strömungen, Ing.-Arch., 18, 277, 10.1007/bf00536743
1967, Mean velocity criterion for scour of course uniform bed material, 46
1935, Über geschiebebewegung, Mitteilungen der Preussischen Versuchsanstalt für Wasserbau und Schiffbau
1935, Sand mixtures and sand movement in fluvial model, Trans. ASCE, 100, 798
USWES, 1936, Flume tests made to develop a synthetic sand which will not form ripples when used in movable bed models
1946, Transportation of suspended sediment by water, Trans. ASCE, 111, 67
1948, Formulas for bed-load transport, 39
E. Karahan, “Initiation of motion for uniform and non-uniform materials,” Ph.D. thesis, Technical University, Istanbul, Turkey, 1975.
1977, Incipient transport of fine grains and flakes by fluids−extended shields diagram, J. Hydraul. Div. ASCE, 103, 601, 10.1061/JYCEAJ.0004766
1995, Erosion and Sedimentation
1997, Threshold of sediment motion in coastal environments, 149
1970, Self-stabilizing tendencies of alluvial channels, J. Waterw. Harbors Div., 96, 235
2012, Stochastic determination of entrainment risk in uniformly sized sediment beds at low transport stages: 1. Theory, J. Geophys. Res., 117, F04004, 10.1029/2011jf002135
1998, Pickup probability for sediment entrainment, J. Hydraul. Eng., 124, 232, 10.1061/(asce)0733-9429(1998)124:2(232)
2002, Pickup probability of sediment under log-normal velocity distribution, J. Hydraul. Eng., 128, 438, 10.1061/(asce)0733-9429(2002)128:4(438)
2003, Rolling and lifting probabilities for sediment entrainment, J. Hydraul. Eng., 129, 110, 10.1061/(asce)0733-9429(2003)129:2(110)
2004, Entrainment probabilities of mixed-size sediment incorporating near-bed coherent flow structures, J. Hydraul. Eng., 130, 1187, 10.1061/(asce)0733-9429(2004)130:12(1187)
2013, Sediment entrainment probability and threshold of sediment suspension: Exponential-based approach, J. Hydraul. Eng., 139, 1099, 10.1061/(asce)hy.1943-7900.0000763
2010, Universal probability distributions of turbulence in open channel flows, J. Hydraul. Res., 48, 388, 10.1080/00221686.2010.481832
2017, Stochastic mechanics of loose boundary particle transport in turbulent flow, Phys. Fluids, 29, 055103, 10.1063/1.4984042
1995, Mechanics and Statistical Rule of Sediment-Laden Flow Movement in Open Channels
1966, Summary of alluvial channel data from flume experiments, 1956–1961
R. Fernandez Luque, “Erosion and transport of bed-load sediment,” Ph.D. thesis, Delft University of Technology, Meppel, The Netherlands, 1974.
1992, Note on lag in bedload discharge, J. Hydraul. Eng., 118, 904, 10.1061/(asce)0733-9429(1992)118:6(904)
A. N. Papanicolaou, “The role of turbulence on the initiation of sediment motion,” Ph.D. thesis, Virginia Institute of Technology, Virginia, USA, 1997.
2011, Near-bed sediment concentration distribution and basic probability of sediment movement, J. Hydraul. Eng., 137, 1269, 10.1061/(asce)hy.1943-7900.0000382
2017, Mechanics of sediment transport: Particle scale of entrainment to continuum scale of bedload flux, J. Eng. Mech., 143, 04017127, 10.1061/(asce)em.1943-7889.0001343
1982, Stochastic model of incipient sediment motion, J. Hydraul. Div. ASCE, 108, 211, 10.1061/JYCEAJ.0005816
2002, Probability of individual grain movement and threshold condition, J. Hydraul. Eng., 128, 1069, 10.1061/(asce)0733-9429(2002)128:12(1069)
2017, A probabilistic model for sediment entrainment: The role of bed irregularity, Int. J. Sediment Res., 32, 137, 10.1016/j.ijsrc.2016.11.001
2008, The role of impulse on the initiation of particle movement under turbulent flow conditions, Science, 322, 717, 10.1126/science.1158954
2010, Impulse and particle dislodgement under turbulent flow conditions, Phys. Fluids, 22, 046601, 10.1063/1.3385433
2010, Role of instantaneous force magnitude and duration on particle entrainment, J. Geophys. Res.: Earth Surf., 115, F02006, 10.1029/2008jf001247
2011, Entrainment of coarse grains in turbulent flows: An extreme value theory approach, Water Resour. Res., 47, W09512, 10.1029/2010wr010236
2001, Spatially averaged open-channel flow over rough bed, J. Hydraul. Eng., 127, 123, 10.1061/(asce)0733-9429(2001)127:2(123)
2007, Double-averaging concept for rough-bed open-channel and overland flows: Theoretical background, J. Hydraul. Eng., 133, 873, 10.1061/(asce)0733-9429(2007)133:8(873)
2007, Double-averaging concept for rough-bed open-channel and overland flows: Applications, J. Hydraul. Eng., 133, 884, 10.1061/(asce)0733-9429(2007)133:8(884)
2012, Gravel-bed hydrodynamics: A double-averaging approach, J. Hydraul. Eng., 138, 707, 10.1061/(asce)hy.1943-7900.0000554
2008, A unifying framework for particle entrainment, Water Resour. Res., 44, W04415, 10.1029/2007wr006363
1967, The structure of turbulent boundary layers, J. Fluid Mech., 30, 741, 10.1017/s0022112067001740
1985, Sea-bed noises reveal role of turbulent bursting phenomenon in sediment transport by tidal currents, Nature, 316, 339, 10.1038/316339a0
A. Schmid, “Wandnahe turbulente bewegungsabläufe und ihre bedeutung für die riffelbildung,” Ph.D. thesis and Report R22-85, Institute for Hydromechanics and Water Resources Management, ETH Zürich, Switzerland, 1985.
1988, Bedload transport of fine gravel observed by motion-picture photography, J. Fluid Mech., 192, 193, 10.1017/s0022112088001831
2010, Laboratory measurements on turbulent pressure fluctuations in and above gravel beds, J. Hydraul. Eng., 136, 779, 10.1061/(asce)hy.1943-7900.0000251
2010, Hydrodynamic forces generated on a spherical sediment particle during entrainment, J. Hydraul. Eng., 136, 756, 10.1061/(asce)hy.1943-7900.0000247
2011, Flow structures and hydrodynamic force during sediment entrainment, Water Resour. Res., 47, W01509, 10.1029/2010wr009089
2014, Instantaneous pressure measurements on a spherical grain under threshold flow conditions, J. Fluid Mech., 741, 60, 10.1017/jfm.2013.632
1989, In situ acoustic measurements of marine gravel threshold and transport, Sedimentology, 36, 61, 10.1111/j.1365-3091.1989.tb00820.x
1997, Turbulent bursting-based sediment entrainment function, J. Hydraul. Eng., 123, 233, 10.1061/(asce)0733-9429(1997)123:3(233)
1999, Bursting phenomenon and incipient motion of solid particles in bed-load transport, J. Hydraul. Res., 37, 683, 10.1080/00221689909498523
2018, Impact of phenomenological theory of turbulence on pragmatic approach to fluvial hydraulics, Phys. Fluids, 30, 10.1063/1.5025218
1941, The local structure of turbulence in incompressible viscous fluids at very large Reynolds numbers, Dokl. Akad. Nauk SSSR, 30, 299
1995, Turbulence: The Legacy of A. N. Kolmogorov
2017, Origin of the scaling laws of sediment transport, Proc. R. Soc. A, 473, 20160785, 10.1098/rspa.2016.0785
1959, Gidrologia i gidraulika v mostovom doroshnom, straitielvie, Hydrology and Hydraulics in Bridge and Road Building
1973, Initiation of motion and roughness of flows in steep channels, 475
1984, Movimiento incipiente de partículas en flujo torrencial, 169
1991, Movement of big particles in steep, macro-rough streams, 149
Summer, 1983, Initiation of sediment transport in steep channels with coarse bed material, Mechanics of Sediment Transport, 207
J. C. Bathurst, H. H. Cao, and W. H. Graf, “The data from the EPFL study of hydraulics and sediment transport in a steep flume,” Report CH-1015, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland, 1984, p. 64.
1997, Inicio de movimiento y acorazamiento, Capítulo 8 del Manual de Ingeniería de Ríos
1956, River Mechanics
1964, Dynamics of Channel Flow
1968, Note on initial movement of coarse uniform bed-material, J. Hydraul. Res., 6, 173, 10.1080/00221686809500228
2003, Particle densimetric Froude number for estimating sediment transport, J. Hydraul. Eng., 129, 428, 10.1061/(asce)0733-9429(2003)129:6(428)
1992, Comparison between rough- and smooth-wall turbulent boundary layers, J. Fluid Mech., 245, 599, 10.1017/s0022112092000594
1998, Turbulent velocity fluctuations need not be Gaussian, J. Fluid Mech., 376, 139, 10.1017/s0022112098002432