Revealing the role of defects in ferroelectric switching with atomic resolution

Nature Communications - Tập 2 Số 1
Peng Gao1, Christopher T. Nelson1, Jacob R. Jokisaari1, Seung‐Hyub Baek2, Chung Wung Bark2, Y. Zhang1, Li Wang3, Darrell G. Schlom4, Chang‐Beom Eom2, Xiaoqing Pan1
1Department of Materials Science and Engineering, University of Michigan-Ann Arbor, Ann Arbor, 48109, Michigan, USA
2Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, 53706, Wisconsin, USA
3International Center for Quantum Materials and School of Physics, Peking University, Beijing, 100871, People's Republic of China
4Department of Materials Science and Engineering, Cornell University, Ithaca, 14853, New York, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Scott, J. F. Applications of modern ferroelectrics. Science 315, 954–959 (2007).

Scott, J. F. & De Araujo, C. A. P. Ferroelectric memories. Science 246, 1400–1405 (1989).

Garcia, V. et al. Giant tunnel electroresistance for non-destructive readout of ferroelectric states. Nature 460, 81–84 (2009).

Garcia, V. et al. Ferroelectric control of spin polarization. Science 327, 1106–1110 (2010).

Tsymbal, E. Y. & Kohlstedt, H. Applied physics—tunneling across a ferroelectric. Science 313, 181–183 (2006).

Maksymovych, P. et al. Polarization control of electron tunneling into ferroelectric surfaces. Science 324, 1421–1425 (2009).

Li, D. B. et al. Direct in situ determination of the polarization dependence of physisorption on ferroelectric surfaces. Nat. Mater. 7, 473–477 (2008).

Zheng, H. et al. Multiferroic BaTiO3-CoFe2O4 nanostructures. Science 303, 661–663 (2004).

Chu, Y. H. et al. Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nat. Mater. 7, 478–482 (2008).

Jesse, S. et al. Direct imaging of the spatial and energy distribution of nucleation centres in ferroelectric materials. Nat. Mater. 7, 209–215 (2008).

Dawber, M., Rabe, K. M. & Scott, J. F. Physics of thin-film ferroelectric oxides. Rev. Mod. Phys. 77, 1083–1130 (2005).

De Araujo, C. A. P., Cuchiaro, J. D., McMillan, L. D., Scott, M. C. & Scott, J. F. Fatigue-free ferroelectric capacitors with platinum-electrodes. Nature 374, 627–629 (1995).

Maksymovych, P. et al. Defect-induced asymmetry of local hysteresis loops on BiFeO3 surfaces. J. Mater. Sci. 44, 5095–5101 (2009).

Yamamoto, N., Yagi, K. & Honjo, G. Electron-microscopic studies of ferroelectric and ferroelastic Gd2(MoO4)4. 4. Polarization reversal and field-induced phase-transformation. Phys. Status Solidi A-Appl. Res. 62, 657–664 (1980).

Snoeck, E., Normand, L., Thorel, A. & Roucau, C. Electron-microscopy study of ferroelastic and ferroelectric domain-wall motions induced by the in-situ application of an electric-field in BaTiO3 . Phase Transit. 46, 77–88 (1994).

Tan, X. L. & Shang, J. K. In-situ transmission electron microscopy study of electric-field-induced grain-boundary cracking in lead zirconate titanate. Philos. Mag. A. 82, 1463–1478 (2002).

Zhang, J. X. et al. Large field-induced strains in a lead-free piezoelectric material. Nat. Nanotechnol. 6, 97–101 (2011).

Chang, H. J. et al. Watching domains grow: in-situ studies of polarization switching by combined scanning probe and scanning transmission electron microscopy. J. Appl. Phys. 110, 052014 (2011).

Eom, C. B. et al. In situ grown YBa2Cu3O7−d thin-films from single-target magnetron sputtering. Appl. Phys. Lett. 55, 595–597 (1989).

Eom, C. B. et al. Single-crystal epitaxial thin-films of the isotropic metallic oxides Sr1−xCaxRuO3 (0-less-than-or-equal-to-x-less-than-or-equal-to-1). Science 258, 1766–1769 (1992).

Eom, C. B. et al. Fabrication and properties of epitaxial ferroelectric heterostructures with (SrRuO3) isotropic metallic oxide electrodes. Appl. Phys. Lett. 63, 2570–2572 (1993).

Nelson, C. T. et al. Spontaneous vortex nanodomain arrays at ferroelectric heterointerfaces. Nano Lett. 11, 828–834 (2011).

Yoshida, C., Yoshida, A. & Tamura, H. Nanoscale conduction modulation in Au/Pb(Zr, Ti)O3/SrRuO3 heterostructure. Appl. Phys. Lett. 75, 1449–1451 (1999).

Folkman, C. M. et al. Study of defect-dipoles in an epitaxial ferroelectric thin film. Appl. Phys. Lett. 96, 052903 (2010).

Balke, N. et al. Direct observation of capacitor switching using planar electrodes. Adv. Funct. Mater. 20, 3466–3475 (2010).

Sze, S. M., Coleman, D. J. & Loya, A. Current transport in metal-semiconductor-metal (MSM) structures. Solid-State Electron. 14, 1209–1218 (1971).

Hartmann, A. J., Neilson, M., Lamb, R. N., Watanabe, K. & Scott, J. F. Ruthenium oxide and strontium ruthenate electrodes for ferroelectric thin-films capacitors. Appl. Phys. A 70, 239–242 (2000).

Muller, E. W. Work function of tungsten single crystal planes measured by the field emission microscope. J. Appl. Phys. 26, 732–737 (1955).

Scott, J. F. Device physics of ferroelectric thin-film memories. Jpn. J. Appl. Phys. 38, 2272–2274 (1999).

Waser, R. Dielectric analysis of integrated ceramic thin film capacitors. Integr. Ferroelectr. 15, 39–51 (1997).

Damjanovic, D. Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep. Prog. Phys. 61, 1267–1324 (1998).