Rethinking some of the rethinking of partial least squares

European Journal of Marketing - Tập 53 Số 4 - Trang 566-584 - 2019
Joseph F. Hair1, Marko Sarstedt2, Christian M. Ringle3
1University of South Alabama, Mobile, Alabama, USA
2Otto-von-Guericke-University Magdeburg, Magdeburg, Germany and Monash University of Malaysia, Malaysia
3Hamburg University of Technology (TUHH), Hamburg, Germany and University of Waikato, New Zealand

Tóm tắt

PurposePartial least squares structural equation modeling (PLS-SEM) is an important statistical technique in the toolbox of methods that researchers in marketing and other social sciences disciplines frequently use in their empirical analyses. The purpose of this paper is to shed light on several misconceptions that have emerged as a result of the proposed “new guidelines” for PLS-SEM. The authors discuss various aspects related to current debates on when or when not to use PLS-SEM, and which model evaluation metrics to apply. In addition, this paper summarizes several important methodological extensions of PLS-SEM researchers can use to improve the quality of their analyses, results and findings.Design/methodology/approachThe paper merges literature from various disciplines, including marketing, strategic management, information systems, accounting and statistics, to present a state-of-the-art review of PLS-SEM. Based on these findings, the paper offers a point of orientation on how to consider and apply these latest developments when executing or assessing PLS-SEM-based research.FindingsThis paper offers guidance regarding situations that favor the use of PLS-SEM and discusses the need to consider certain model evaluation metrics. It also summarizes how to deal with endogeneity in PLS-SEM, and critically comments on the recent proposal to adjust PLS-SEM estimates to mimic common factor models that are the foundation of covariance-based SEM. Finally, this paper opposes characterizing common concepts and practices of PLS-SEM as “out-of-date” without providing well-substantiated alternatives and solutions.Research limitations/implicationsThe paper paves the way for future discussions and suggests a way forward to reach consensus regarding situations that favor PLS-SEM use and its application.Practical implicationsThis paper offers guidance on how to consider the latest methodological developments when executing or assessing PLS-SEM-based research.Originality/valueThis paper complements recently proposed “new guidelines” with the aim of offering a counter perspective on some strong claims made in the latest literature on PLS-SEM. It also clarifies some misconceptions regarding the application of PLS-SEM.

Từ khóa


Tài liệu tham khảo

10.1287/isre.2013.0493

10.1080/15366367.2016.1205935

10.1108/IJCHM-10-2016-0568

10.1037/0033-2909.103.3.411

10.1016/j.leaqua.2010.10.010

Bandalos D.L., 2009, Statistical and Methodological Myths and Urban Legends: Doctrine, Verity and Fable in the Organizational and Social Sciences, 61

10.1037/0022-3514.51.6.1173

10.1016/j.lrp.2012.10.001

Becker J.-M., 2013, 2013 Proceedings of the International Conference on Information Systems

10.25300/MISQ/2013/37.3.01

Becker J.-M., 2018, Journal of Applied Structural Equation Modeling, 2, 1, 10.47263/JASEM.2(2)01

Benitez J., 2016, 22nd Americas Conference on Information Systems (ACIS)

10.25300/MISQ/2018/13245

10.1002/9781118619179

10.1007/978-3-319-64069-3_8

10.1108/IJCHM-10-2017-0649

Chin W.W., 1995, Technology Studies, 2, 315

Chin W.W., 1998, Modern Methods for Business Research, 295

10.1007/978-3-540-32827-8_29

10.1287/isre.14.2.189.16018

Chin W.W., 1999, Statistical Strategies for Small Sample Research, 307

10.1108/S1474-7979(2011)0000022004

10.1016/j.jbusres.2008.01.009

10.1016/0304-4076(83)90094-5

10.1016/j.csda.2014.07.008

10.25300/MISQ/2015/39.2.02

10.1177/0047287515569779

10.1007/978-3-319-64069-3_7

10.1287/mksc.1110.0666

10.1016/j.jbusres.2016.03.050

Falk R.F., 1992, A Primer for Soft Modeling

10.1016/j.jbusres.2009.05.003

10.1108/IMDS-06-2016-0248

10.1177/002224378101800104

10.1177/001316446902900104

10.1108/IntR-12-2017-0515

Garson G.D., 2016, Partial Least Squares Regression and Structural Equation Models

10.2307/23044042

10.1016/0304-4076(81)90091-9

10.2307/41703490

10.1007/s10651-007-0047-7

10.2307/25148742

10.1207/s15328031us0304_4

10.1007/BF03396655

Hair J.F., 2017, A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM)

Hair J.F., 2019, European Business Review

10.1007/s11747-017-0517-x

10.2753/MTP1069-6679190202

10.1016/j.lrp.2013.01.001

Hair J.F., 2018, Advanced Issues in Partial Least Squares Structural Equation Modeling (PLS-SEM)

10.1007/s11747-011-0261-6

Hair J.F., 2018, Multivariate Data Analysis, 8

Hayes A.F., 2018, Introduction to Mediation, Moderation, and Conditional Process Analysis

10.1080/00913367.2017.1281780

Henseler J., 2017, 9th International Conference on PLS and Related Methods

10.1007/s11135-018-0689-6

10.1177/1094428114526928

10.1007/978-3-540-32827-8_31

10.1108/IMDS-09-2015-0382

10.1007/978-3-319-64069-3_2

10.1108/978-1-78756-699-620181002

10.1007/s11747-014-0403-8

10.1509/jim.17.0151

10.1287/mksc.16.1.39

10.2307/2285946

Jöreskog K.G., 1982, Systems under Indirect Observation, Part I, 263

10.1016/j.pursup.2015.04.005

10.1108/IntR-12-2017-0509

10.1177/014662168801200205

10.1108/978-1-78756-699-620181004

10.1007/978-3-319-64069-3

10.1108/EJM-09-2017-0599

10.1016/j.jbusres.2012.08.004

10.1007/978-3-642-52512-4

10.1002/j.2333-8504.1973.tb00648.x

10.1207/s15327906mbr3102_5

10.1007/BF02289238

10.1007/978-1-4614-8283-3_2

10.2307/41703477

10.2307/25148727

10.1093/oxfordhb/9780199934898.013.0025

Matthews L., 2018, The Marketing Management Journal, 28, 1

Memon M., 2019, Journal of Applied Structural Equation Modeling, 3, i, 10.47263/JASEM.3(1)01

10.1177/1094428114529165

10.1108/JHTT-09-2017-0106

10.1007/BF02296397

10.1016/j.acclit.2016.09.003

10.1007/s00187-017-0249-6

10.1108/IMDS-07-2015-0302

Papies D., 2016, Advanced Methods in Modeling Markets, 581

10.1287/mksc.1120.0718

Petter S., 2018, ACM SIGMIS Database: The DATABASE for Advances in Information Systems, 49, 10, 10.1145/3229335.3229337

10.1016/S1364-6613(02)01964-2

Popper K.R., 1962, Conjectures and Refutations: The Growth of Scientific Knowledge

Posey C., 2015, Communications of the Association for Information Systems, 36

10.3758/BRM.40.3.879

Ramayah T., 2016, Partial Least Squares Structural Equation Modeling (PLS-SEM) Using SmartPLS 3.0: An Updated and Practical Guide to Statistical Analysis

Rasoolimanesh S.M., 2018, Journal of Hospitality and Tourism Technology

10.1016/j.ijresmar.2009.08.001

10.1016/j.emj.2016.08.001

10.1016/j.lrp.2012.09.010

10.1016/j.lrp.2014.02.003

10.1016/j.emj.2016.05.006

10.1287/isre.2014.0543

10.15358/0344-1369-2017-3-4

Ringle C.M., 2019, The International Journal of Human Resource Management

10.1007/s00291-013-0320-0

Ringle C.M., 2015, SmartPLS 3

10.4018/978-1-4666-0179-6.ch010

10.1177/1094428112474693

10.1108/03090561111167298

10.1108/EJM-10-2016-0546

Sánchez G., 2013, PLS Path Modeling with R

10.1007/BF03396886

10.1016/j.jbusres.2016.06.007

10.1007/978-3-319-05542-8_15-1

10.1007/978-3-319-64069-3_9

10.1016/j.jbusres.2016.04.009

10.1007/BF02291413

10.1214/aos/1176344136

Sharma P.N., 2019, Decision Sciences

Sharma P.N., 2018, Journal of the Association for Information Systems

10.1214/10-STS330

10.2307/23042796

10.1016/j.jbusres.2016.03.049

10.1287/mksc.1080.0467

10.1016/S0167-8116(00)00016-1

10.1016/j.jclepro.2018.06.226

10.1016/j.ijresmar.2014.03.002

10.1016/j.csda.2004.03.005

10.1177/0092070302303003

10.2307/20650284

10.1002/0471667196.ess1914.pub2

Wooldridge J.M., 2010, Econometric Analysis of Cross Section and Panel Data

10.1108/IMDS-07-2015-0302

10.1016/j.emj.2016.06.003